• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2023, Vol. 45 ›› Issue (01): 37-45.

• 高性能计算 • 上一篇    下一篇

飞行器翼型表面流场数据智能分区

胡跃迪,苏想,李楠,张丽梅   

  1. (北京工商大学人工智能学院,北京 100048)
  • 收稿日期:2022-08-01 修回日期:2022-09-09 接受日期:2023-01-25 出版日期:2023-01-25 发布日期:2023-01-25
  • 基金资助:
    国家自然科学基金(61877002)

Intelligent partitioning of airfoil surface flow field data of aircraft

HU Yue-di,SU Xiang,LI Nan,ZHANG Li-mei   

  1. (School of Artificial Intelligence,Beijing Technology and Business University,Beijing 100048,China)
  • Received:2022-08-01 Revised:2022-09-09 Accepted:2023-01-25 Online:2023-01-25 Published:2023-01-25

摘要: 飞行器翼型CFD仿真结果后处理分析自动化程度的提升能有效地提升产品设计效率,因此提出了一种翼型表面流场数据智能化分区方法,可有效得到翼型表面流场分区结果。首先,通过参数化批量修改气动外形得到翼型数据集,再利用数值模拟生成流场计算结果;然后,基于共形几何对流场数据进行降维并进行重采样和矩阵化,将其作为预测模型的标准输入;随后,构建卷积神经网络模型对流场数据进行训练和预测;最后,通过逆映射将分区结果重采样到翼型表面。实验表明,该方法可针对不同的物理量高效地对翼型表面流场数据进行分区,在测试数据集上的准确率在92%以上。

关键词: 流场后处理, 共形参数化, 保角变换, 卷积神经网络, 流场分区

Abstract: Advances in the automatic post-processing analysis of aircraft airfoil CFD simulation results can effectively improve the efficiency of product design. Therefore, an intelligent partitioning method of airfoil surface flow field data is proposed, which can effectively obtain the airfoil surface flow field partitioning results. Firstly, the airfoil dataset is obtained by modifying the aerodynamic shapes in batch mode with parameterization, and numerical simulation is conducted to generate flow field calculation results. Secondly, the conformal ge-ometry method is adopted to reduce the dimension of the surface flow field data, and perform the resampling and matrixing process, so that the data can be used as the standard input of the prediction model. Thirdly, a convolutional neural network model is built up to train and predict the flow field data. Finally, the parti-tioning results are resampled to the airfoil surface by inverse mapping. Experiments show that the proposed intelligent partitioning method can efficiently partition the flow field data on the airfoil surface for different physical quantities, with an accuracy of more than 92% on the test data set.

Key words: flow field post-processing, conformal parameterization, conformal transformation, convolu-tional neural network, flow field partitioning