• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2023, Vol. 45 ›› Issue (09): 1639-1647.

• 人工智能与数据挖掘 • 上一篇    下一篇

基于模型混合的智能交易行为异常检测

张耐1,张晨亮1,柳永翔1,陈聪1,黄艳婷2   

  1. (1.华东师范大学计算机科学与技术学院,上海 200062;2.上海华鑫股份有限公司,上海 200032)

  • 收稿日期:2021-11-09 修回日期:2022-05-13 接受日期:2023-09-25 出版日期:2023-09-25 发布日期:2023-09-12

Anomaly detection of intelligent trading behavior based on mixed model

ZHANG Nai1,ZHANG Chen-liang1,LIU Yong-xiang1,CHEN Cong1,HUANG Yan-ting2   

  1. (1.College of Computer Science and Technology,East China Normal University,Shanghai 200062;
    2.Shanghai Chinafortune Co.,Ltd.,Shanghai 200032,China)
  • Received:2021-11-09 Revised:2022-05-13 Accepted:2023-09-25 Online:2023-09-25 Published:2023-09-12

摘要: 作为智能金融的重要体现之一,基于交易软件的智能化交易在国内金融市场方兴未艾,显著提升了金融交易效率。然而,智能交易软件类型丰富,其涉及的交易策略设计思路和算法复杂多样,造成交易存在异常、不合规风险。目前,对于智能交易行为的异常检测工作尚未充分展开。为此,针对交易数据类型的复杂性和专业性,提出了融合深度学习隐式表征学习和规则树模型显式规则学习的思路,对交易数据涉及的时序性和合规性分别进行建模。为验证所提模型的有效性,在股票、期货等多种类型数据上将其和一些代表性的基线模型进行了对比,实验结果表明该模型能够取得最佳性能。此外,对混合模型进行了进一步分析,测试了不同特征对于异常检测效果的影响。

关键词: 安全性评估, 异常检测, 深度学习, 梯度提升树

Abstract: As one of the important embodiments of intelligent finance, intelligent trading based on trading software is booming in the domestic financial market, significantly improving the efficiency of financial transactions. However, there are various types of intelligent trading software, and the design ideas and algorithm complexity of the trading strategies involved are diverse, leading to abnormal trading and non-compliance risks. Currently, the work of anomaly detection for intelligent trading behavior has not been fully developed. Therefore, aiming at the complexity and professionalism of the trading scenario, a method combining deep learning implicit representation learning and rule tree model explicit rule learning is proposed to model the timeliness and compliance of the trading data respectively. To verify the effectiveness of the proposed method, it has been compared with some representative benchmark methods in multiple scenarios such as stocks and futures, and the best performance has been achieved. In addition, further analysis of the model has been conducted to verify the impact of different features on the effectiveness of abnormal detection.