• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2023, Vol. 45 ›› Issue (10): 1847-1857.

• 人工智能与数据挖掘 • 上一篇    下一篇

多阶段时序和语义信息增强的问题生成模型

周菊香1,2,周明涛1,甘健侯1,2,徐坚3   

  1. (1.云南师范大学民族教育信息化教育部重点实验室,云南 昆明 650500;
    2.云南师范大学云南省智慧教育重点实验室,云南 昆明 650500;3.曲靖师范学院信息工程学院,云南 曲靖 655011)

  • 收稿日期:2023-05-10 修回日期:2023-06-15 接受日期:2023-10-25 出版日期:2023-10-25 发布日期:2023-10-17
  • 基金资助:
    国家自然科学基金(62166050)

A question generation model with multi-stage temporal and semantic information enhancement

ZHOU Ju-xiang1,2,ZHOU Ming-tao1,GAN Jian-hou1,2,XU Jian3   

  1. (1.Key Laboratory of Education Informatization for Nationalities,
    Ministry of Education,Yunnan Normal University,Kunming 650500;
    2.Yunnan Key Laboratory of Smart Education,Yunnan Normal University,Kunming 650500;
    3.School of Information Engineering,Qujing Normal University,Qujing 655011,China)
  • Received:2023-05-10 Revised:2023-06-15 Accepted:2023-10-25 Online:2023-10-25 Published:2023-10-17

摘要: 针对图到序列的问题生成模型编码器的多阶段编码以及解码过程中容易丢失段落中丰富的序列信息和语义结构信息的问题,设计了基于多阶段时序和语义信息增强的模型MS-SIE。首先,将编码器不同阶段编码的段落语义信息进行融合,输入到循环神经网络进行编码;然后,在解码阶段引入迭代图神经网络,将编码后的段落信息与解码阶段隐藏在先前生成的文本问题中丰富的语义结构信息相结合;最后,利用基于注意力机制的循环神经网络生成问题。实验结果表明,提出的模型在自动评估指标和人工评价指标上均明显优于现有的序列到序列模型和图到序列模型。

关键词: 问题生成, 多阶段时序融合, 语义信息增强, 循环神经网络, 迭代图神经网络

Abstract: To address the problems of multi-stage encoding of the encoder of the graph-to-sequence question generation model and the easy loss of rich sequence information and semantic structure information in the paragraphs during decoding, this paper designs a model based on multi-stage timing and semantic information enhancement(MS-SIE). The model first fuses the semantic information of the passages encoded at different stages of the encoder and inputs them to the recurrent neural network for encoding. Then, an iterative graph neural network is introduced in the decoding stage to combine the encoded paragraph information with the rich semantic structure information hidden in the previously generated text questions in the decoding stage. Finally, a recurrent neural network based on an attention mechanism is used to generate the questions. The results show that the model proposed significantly outperforms the existing sequence-to-sequence model and graph-to-sequence model in both automatic evaluation metrics and manual evaluation metrics.

Key words: question generation, multi-stage temporal fusion, semantic information enhancement, recurrent neural network, iterative graph neural network