• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2023, Vol. 45 ›› Issue (10): 1858-1865.

• 人工智能与数据挖掘 • 上一篇    下一篇

融合图游走信息的图注意力网络方面级情感分析

杨春霞1,2,3,桂强1,2,3,马文文1,2,3,徐奔1,2,3    

  1. (1.南京信息工程大学自动化学院,江苏 南京 210044;2.江苏省大数据分析技术重点实验室,江苏  南京 210044;
    3.江苏省大气环境与装备技术协同创新中心,江苏 南京 210044)

  • 收稿日期:2022-02-25 修回日期:2022-05-13 接受日期:2023-10-25 出版日期:2023-10-25 发布日期:2023-10-17
  • 基金资助:
    国家自然科学基金 (61273229,51705260)

Aspect-level sentiment analysis of graph attention network fused with graph walk information

YANG Chun-xia1,2,3,GUI Qiang1,2,3,MA Wen-wen1,2,3,XU Ben1,2,3   

  1. (1.School of Automation,Nanjing University of Information Technology,Nanjing 210044;
    2.Key Laboratory of Big Data Analysis Technology of Jiangsu Province,Nanjing 210044;
    3.Jiangsu Province Atmospheric Environment and Equipment 
    Technology Collaborative Innovation Center,Nanjing 210044,China)
  • Received:2022-02-25 Revised:2022-05-13 Accepted:2023-10-25 Online:2023-10-25 Published:2023-10-17

摘要: 在方面级情感分析任务中常用注意力机制获取单词的权重信息,忽略了句法结构对提取句子中不同单词重要程度的作用。此外,多方面词语句中会出现方面词和情感词关联混淆的问题,以及无法有效地关注与目标方面词情感极性相关的上下文部分。提出了融合图游走信息的图注意力神经网络模型GW-GAT。在语法图上执行图游走获取句子的单词权重系数;使用图注意力网络结合单词节点权重与节点之间的权重突出对目标方面词情感极性起重要作用的上下文部分,经过全连接和softmax获得最终的情感极性。在SemEval2014任务和Twitter数据集上的实验结果表明,GW-GAT模型性能优于基线模型,获得了较好的实验结果。

关键词: 情感分析, 语法图, 图游走, 图神经网络

Abstract: In the aspect-level sentiment analysis task, the attention mechanism is commonly used to obtain the weight information of words, ignoring the effect of syntactic structure on extracting the importance of different words in sentences. In addition, there is a problem of confusion between aspect words and sentiment words in multi-aspect word sentences. How to effectively pay attention to the context part related to the emotional polarity of the target aspect words is often ignored. A graph attention neural network model (GW-GAT) that integrates graph walk information is proposed. Graph walk is performed on the grammar graph to obtain the word weight coefficient of the sentence. The graph attention network is used to combine the word node weight and the weight between the nodes to highlight the context part that plays an important role in the word sen-timent polarity in the target aspect. Finally, the sentiment polarity is obtained through fully connected and softmax layers. The experimental results on the SemEval2014 task and the Twitter dataset show that the GW-GAT model outperforms the baseline model and obtains better experimental results. 

Key words: sentiment analysis, syntax graph, graph walk, graph neural network