• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2026, Vol. 48 ›› Issue (1): 172-179.

• 人工智能与数据挖掘 • 上一篇    下一篇

基于增强预测模型的自动驾驶轨迹预测

田红鹏,崔丹,张筱培


  

  1. (西安科技大学人工智能与计算机学院(软件学院),陕西 西安 710600) 

  • 收稿日期:2024-05-24 修回日期:2024-09-20 出版日期:2026-01-25 发布日期:2026-01-25
  • 基金资助:


Autonomous driving trajectory prediction based on enhanced prediction model

TIAN Hongpeng,CUI Dan,ZHANG Xiaopei   

  1. (College of Artificial Intelligence&Computer Science(College of Software),
    Xi’an University of Science and Technology,Xi’an 710600,China)
  • Received:2024-05-24 Revised:2024-09-20 Online:2026-01-25 Published:2026-01-25

摘要: 自动驾驶技术面临的主要挑战之一是实时预测周边智能体(Agent)未来可靠的轨迹信息,为辅助规划做出最优化决策。提出了一种名为GT-Former的智能体间交互预测模型。该模型以Transformer结构为基础,融合图卷积网络(GCN)以输出智能体动态交互特征。此外,地图与智能体的交互以智能体特征为查询条件,利用交叉注意力机制与多模态注意力机制结合,整合单模态与多模态的交互信息,全面获取智能体与各类地图特征之间的相互作用信息。在Waymo数据集上的仿真实验表明,这一综合策略提升了模型多智能体轨迹预测的准确性。


关键词: 自动驾驶, 轨迹预测, Transformer模型, 图卷积网络(GCN), 交叉注意力, 多模态注意力

Abstract: One of the major challenges in autonomous driving technology is the real-time prediction of reliable future trajectory information for surrounding agents to facilitate optimal decision-making for path planning. This paper proposes an agent interaction prediction model  named GT-Former. Built upon the Transformer structure, the proposed model integrates graph convolutional network (GCN) to output dynamic interaction features among agents. Furthermore, the interaction between the map and agents utilizes agents’ features as query conditions, combining cross-attention and multi-modal attention mechanisms to integrate both mono-modal and multi-modal interaction information, thereby comprehensively capturing the interaction information between agents and various map features. Simulation experiments on the Waymo dataset demonstrate that this integrated strategy enhances the accuracy of multi- agent trajectory prediction of the model.


Key words: autonomous driving, trajectory prediction, Transformer model, graph convolutional network(GCN), cross-attention, multimodal attention