• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2011, Vol. 33 ›› Issue (3): 77-81.doi: 10.3969/j.issn.1007130X.2011.

• 论文 • 上一篇    下一篇

一类带形状参数的类四次三角Bézier曲线

杨炼,李军成   

  1. (湖南人文科技学院数学系,湖南 娄底 417000)
  • 收稿日期:2010-04-16 修回日期:2010-08-07 出版日期:2011-03-25 发布日期:2011-03-25
  • 作者简介:杨炼(1980),男,湖南隆回人,硕士生,讲师,研究方向为计算机图形学与计算机辅助几何设计。李军成(1982),男,湖北汉川人,硕士生,讲师,CCF会员(E200012001M),研究方向为计算机辅助几何设计、数值计算
  • 基金资助:

    湖南人文科技学院青年基金项目(2010QN09)

A Class of QuasiQuartic Trigonometric Polynomial Bézier Curves with a Shape Parameter

YANG Lian,LI Juncheng   

  1. (Department of Mathematics,Hunan Institute of Humanities,Science and Technology,Loudi 417000,China)
  • Received:2010-04-16 Revised:2010-08-07 Online:2011-03-25 Published:2011-03-25

摘要:

本文给出了带形状参数的类四次三角多项式Bézier曲线。由五个控制顶点生成的曲线不仅具有类似于

四次Bézier曲线的诸多性质,而且其形状可由一个参数进行调节,使得该曲线具有更强的表现能力。参数有

明确的几何意义:参数越大,曲线越逼近控制多边形,具有比四次Bézier曲线更好的逼近性。曲线无需有理

形式即可精确表示圆、椭圆、抛物线等二次曲线弧。为便于自由曲线的设计,还讨论了两段曲线的拼接性,

并给出了曲线G2和C3连续的拼接条件。应用实例表明,该曲线在计算机辅助几何设计中具有较高的应用价值

关键词: Bé, zier曲线, 三角多项式, 类四次, 形状参数, 拼接性

Abstract:

A class of quasiquartic trigonometric polynomial Bézier curves  with a shape

parameter is presented. The curve is controlled by five points, and it has a lot of similar

characteristics with the traditional quartic Bézier curve, and its shape can be adjusted by a

parameter, which makes the curve feature  more powerful expression ability. The shape

parameter affects the property of geometry, the larger is the parameter, and the more of the

curve approaches the control polygon, therefore, the trigonometric polynomial curve with the

shape parameter can be close to the given control polygon than the quartic Bézier curve. The

new curve can represent exactly the arc of circle, arc of ellipse, arc of parabola and other

quadratic curves without using a rational form. For designing free curves, the G2 and C3

continuity condition of twopiece curves are also discussed. The modeling examples illustrate

that the new curve has a high application value for computer aided geometric design.

Key words: Bézier curves;trigonometric polynomial;quasiquartic;shape parameter;continuity