• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2013, Vol. 35 ›› Issue (3): 155-158.

• 论文 • 上一篇    下一篇

基于贝叶斯网络的客户流失分析研究

朱志勇1,徐长梅1,刘志兵1,胡晨刚2   

  1. (1.长沙学院计算机科学与技术系,湖南 长沙 410003;2.69316部队,新疆 泽普 844800)
  • 收稿日期:2012-07-09 修回日期:2012-11-28 出版日期:2013-03-25 发布日期:2013-03-25
  • 基金资助:

    湖南省科技计划项目(2011FJ3075)

Research of customer churn analysis based on the Bayesian network 

ZHU Zhiyong1,XU Changmei1,LIU Zhibing1,HU Chengang2   

  1. (1.Department of Computer Science and Technology,Changsha University,Changsha 410003;
    2.Troop 69316,Zepu 844800,China)
  • Received:2012-07-09 Revised:2012-11-28 Online:2013-03-25 Published:2013-03-25

摘要:

数据挖掘是通过分析大量数据并从中寻找其规律的一项热门技术,而客户流失分析系统是以数据挖掘技术为基础,建立客户流失模型的新应用。贝叶斯网络有良好的逻辑性、预测性,在解决不确定性和不完整性问题以及处理复杂问题上有很大的优势。本文采用贝叶斯网络进行流失客户分析,挖掘导致流失的客户特征,从而辅助决策者制订相应的客户挽留策略。为了比较贝叶斯网络性能,本文构建了两个改进的贝叶斯网络模型,即树增强朴素贝叶斯网络、马尔科夫毯贝叶斯网络模型,并与神经网络模型的分类性能进行比较。实验结果表明,马可夫毯贝叶斯网络模型的分类预测能力有一定程度提高。

关键词: 贝叶斯网络, 特征选择, 客户流失

Abstract:

Data mining is a popular technology of finding regularity through analysis a large amount of data, while the customer churn analysis system is a new application to realize customer churn model based on data mining technology. Bayesian networks have good logic, predictability, and a great advantage to solve the problem of uncertainty and incompleteness as well as dealing with complex issues. This paper adopts Bayesian networks for customer churn analysis, mining the result in churn characters, in order to help decisionmaking manager formulate corresponding detainment strategy. In order to compare the performance of Bayesian network, this paper constructed two improved Bayesian network model, that is, the tree augmented naive Bayesian network, Markov Blanket Bayesian network model, and compare the classification performance with the neural network model. Experimental results show that classification performance of Markov blanket Bayesian network model improved to some extent.

Key words: Bayesian network;feature selection;customer churn