• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2015, Vol. 37 ›› Issue (09): 1777-1782.

• 论文 • 上一篇    下一篇

一种高准确度多分类结构选择方法

陈青锋1,秦拯1,何流2,陈麟3   

  1. (1.湖南大学信息科学与工程学院,湖南 长沙 410082;2.武汉大学国际软件学院,湖北 武汉 430079;
    3.湖南省气象技术装备中心,湖南 长沙 410007)
  • 收稿日期:2014-09-30 修回日期:2014-12-29 出版日期:2015-09-25 发布日期:2015-09-25
  • 基金资助:

    国家自然科学基金资助项目(61472131,61272546)

A highly accurate structure selection
method for multi-class classification  

CHEN Qingfeng1,QIN Zheng1,HE Liu2,CHEN Lin3   

  1. (1.School of Information Science and Engineering,Hunan University,Changsha 410082;
    2.International School of Software,Wuhan University,Wuhan 430079;
    3.Hunan Meteorological Equipment Center,Changsha 410007,China)
  • Received:2014-09-30 Revised:2014-12-29 Online:2015-09-25 Published:2015-09-25

摘要:

支持向量机SVM是目前最流行的二分类算法之一。现实生活中数据集大多要求能够进行多分类,而有向无环图DAG方法是将SVM应用扩展到多分类的用得最多的方式之一,它调用分类器次数较少,执行速度快,但是由于有错误向下累积和分类偏向性等情况存在,会影响DAG分类结果的准确度。在使用DAGSVM的时候,对于k种类别有k!种不同的备选结构,根据数据集特性选择合适的DAG结构能够有效提高结果的准确度。提出使用估计准确度的方法,从备选结构中用穷举法选择出最高准确度估计值的DAG结构,以此作为测试集的结构进行分类。实验结果表明,相较其它方法,测试数据集采用该方法选择的DAG结构后的分类准确性得到显著提高,在对类别数量不太多的数据集进行多类分类时有较好的效果。

关键词: 支持向量机, 多分类, DAGSVM, 结构选择

Abstract:

Support vector machine is one of the most popular binary classification algorithms,but data sets in the real world require multi-classification. Directed Acycline Graph (DAG) is one of the most used ways that expand SVM to support multiclass classification.DAG calls the classifiers less frequently and works faster than other methods.However,the accumulated mistakes cannot be cleared, and it has k! kinds of decision structures when dealing with k-class problems.Therefore structure selection becomes a key problem while using DAG-SVMs.In this paper we propose a highly accurate DAG structure selection method that uses the classificatory percentage in the training data sets to estimate the accuracy of the test data sets, and chooses the DAG structure with the highest accuracy. Experimental results show that compared with other methods,the proposed method can improve the classification accuracy of test data set dramatically and has a better effect in performing multi-class classification of the data sets without too many different types.

Key words: support vector machine;multi-classification;DAGSVM;structure selection