J4 ›› 2015, Vol. 37 ›› Issue (09): 1783-1793.
董跃华,刘力
DONG Yuehua,LIU Li
摘要:
通过分析ID3算法的基本原理及其多值偏向问题,提出了一种基于相关系数的决策树优化算法。首先通过引进相关系数对ID3算法进行改进,从而克服其多值偏向问题,然后运用数学中泰勒公式和麦克劳林公式的性质,对信息增益公式进行近似简化。通过具体数据的实例验证,说明优化后的ID3算法能够解决多值偏向问题。标准数据集UCI上的实验结果表明,在构建决策树的过程中,既提高了平均分类准确率,又降低了构建决策树的复杂度,从而还缩短了决策树的生成时间,当数据集中的样本数较大时,优化后的ID3算法的效率得到了明显的提高。