• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2016, Vol. 38 ›› Issue (02): 356-362.

• 论文 • 上一篇    下一篇

一种改进的混合蛙跳和K均值结合的聚类算法

喻金平1,张勇2,廖列法2,梅宏标3   

  1. (1.江西理工大学工程研究院,江西 赣州 341000;2.江西理工大学信息工程学院,江西 赣州 341000;
    3.江西理工大学应用科学学院,江西 赣州 341000)
  • 收稿日期:2014-12-08 修回日期:2015-05-06 出版日期:2016-02-25 发布日期:2016-02-25
  • 基金资助:

    国家自然科学基金(71462018);江西省教育厅自然科学基金(DJJ12346)

A clustering algorithm based on modified
 shuffled frog leaping algorithm and Kmeans         

YU Jinping1,ZHANG Yong2,LIAO Liefa2,MEI Hongbiao3   

  1. (1.Institute of Engineering Research,Jiangxi University of Science & Technology,Ganzhou 341000;
    2.College of Information Engineering,Jiangxi University of Science & Technology,Ganzhou 341000;
    3.College of Applied Sciences,Jiangxi University of Science & Technology,Ganzhou 341000,China)
  • Received:2014-12-08 Revised:2015-05-06 Online:2016-02-25 Published:2016-02-25

摘要:

传统K均值聚类(KMC)算法过分依赖初始值的设置,容易陷入局部最优;混合蛙跳算法(SFLA)存在收敛速度和搜索速度较慢、局部和全局信息交流不全面等缺点。针对以上缺点,首先提出一种改进的混合蛙跳算法(MSFLA)。该算法根据粒子群优化和差分进化思想,在青蛙个体变异时,引入上一次移动距离的权重惯性系数和缩放因子,从种群中的最优位置和历史最优位置之间的随机点出发,以子群内的青蛙的平均值和最差位置差值为步长进行青蛙个体的更新操作。再将MSFLA与KMC算法结合提出MSFLAKMC算法,有效地克服了KMC算法过分依赖初始值设置问题,同时降低了KMC算法陷入局部最优的可能性。实验结果表明,MSFLA具有较强的寻优能力,MSFLAKMC算法则具有更好的聚类性能。

关键词: K均值算法, 混合蛙跳算法, 距离更新公式, 适应度函数, 聚类

Abstract:

Traditional kmeans clustering (KMC) algorithm is overdependent on initial value setting and falls into local optimum easily. Shuffled frog leaping algorithm (SFLA) has some shortcomings, such as slow speed on convergence and searching, incomprehensive exchange between local and global information. Aiming at these disadvantages, we propose a modified shuffled frog leaping algorithm (MSFLA). According to the ideas of differential evolution and particle swarm optimization, inertia weight coefficients of former displacement and scaling factors are introduced into the MSFLA during individual variation of frogs. We randomly choose a point between the best location and the best historical position,and take the difference value between the average and the worst position as the step length to update individual frogs . We present the MSFLAKMC based on the MSFLA and the KMC, which effectively overcomes the problems of initial value setting of the KMC algorithm, and reduces the likelihood of the KMC algorithm into a local optimum. Experimental results show that the MSFLA has strong search capabilities while the MSFLAKMC has better clustering performance.

Key words: Kmeans clustering algorithm;SFLA;distance updating formula;fitness function;clustering