• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 图形与图像 • 上一篇    下一篇

基于半监督LDA特征子空间优化的人脸识别算法

纪明君,刘漫丹,才乐千   

  1. (华东理工大学信息科学与工程学院,上海 200237)
  • 收稿日期:2017-09-17 修回日期:2017-12-01 出版日期:2018-10-25 发布日期:2018-10-25
  • 基金资助:

    中央高校基本科研业务费专项资金(WH1213010)

A face recognition algorithm based on semi-supervised
LDA feature subspace optimization

JI Mingjun,LIU Mandan,CAI Leqian   

  1. (School of Information Science and Engineering,East China University of Science and Technology,Shanghai 200237,China)
  • Received:2017-09-17 Revised:2017-12-01 Online:2018-10-25 Published:2018-10-25

摘要:

人脸特征提取是人脸识别流程最重要的步骤,特征的好坏直接影响了识别效果。为了得到更好的人脸识别效果,需要充分利用样本的信息。为了充分利用训练样本和测试样本包含的信息,提出了利用样本散度矩阵将主成分分析PCA算法和线性判别分析LDA算法加权组合的半监督LDA(SLDA)特征提取算法。同时,受组合优化问题的启发,利用二进制遗传算法对半监督特征提取算法得到的特征空间进行优化。在ORL人脸数据库上的实验结果表明:与人脸识别经典算法和部分改进算法相比,SLDA算法获得了更高的识别率。
 

关键词: PCA算法, Fisher判别分析, 二进制遗传算法, 特征选择, 人脸识别

Abstract:

Facial feature extraction is the most important step in face recognition process, and the quality of the feature directly affects the recognition rate. In order to get better face recognition effect, it is necessary to make full use of sample information. To make full use of the information contained in training samples and test samples, we propose a semisupervised linear discriminant analysis (SLDA) feature extraction method based on weighted combination of principal component analysis (PCA) and linear discriminant analysis (LDA). At the same time, inspired by the combinatorial optimization problem, we use the binary genetic algorithm to optimize the feature space obtained by the semisupervised feature extraction method. Experimental results of ORL face database show that the proposed method achieves higher recognition rate than the classical face recognition algorithm and some improved methods.
 

Key words: PCA algorithm, Fisher discriminant analysis, binary genetic algorithm, feature selection, face recognition