摘要:
相比传统特征,卷积神经网络提取的特征对图像具有更强的描述能力,其卷积层比全连接层更适合用来检索图像。然而卷积特征是高维特征,若直接用来匹配图像会消耗大量的时间和内存。提出了一种新的改善和整合卷积特征,形成单维特征向量,再将其用于图像匹配的方法。首先,提取最后一个卷积层的三维特征,再对该卷积特征重新加权,突显图像的边缘信息和位置信息;其次,用滑动窗口进行处理,形成多个区域特征向量,再相加整合成全局特征向量;最后,用余弦距离衡量查询图和测试图的相似性得出检索的初始排名,并且用拓展查询方法进行重排得出最终的平均精度均值mAP。分别在Paris6k和Oxford5k数据库以及用100k张图扩展的Paris106k和Oxford105k数据库上进行测试。相对于CroW方法在Paris数据库上获得的mAP性能指标,本文方法提升了约3个百分点;在Oxford数据库上提升了约1个百分点。实验结果表明,新方法提取的全局特征能够更好地描述图像。
袁晖1,廖开阳1,3,郑元林1,2,曹从军1,3,汤梓伟1,邓轩1. 基于CNN特征加权和区域整合的图像检索[J]. 计算机工程与科学.
YUAN Hui1,LIAO Kaiyang1,3,ZHENG Yuanlin1,2,CAO Congjun1,3,TANG Ziwei1,DENG Xuan1.
Image retrieval based on CNN feature
weighting and region integration
[J]. Computer Engineering & Science.