• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 人工智能与数据挖掘 • 上一篇    下一篇

基于双向LSTM的军事命名实体识别

李健龙,王盼卿,韩琪羽   

  1. (陆军工程大学石家庄校区装备模拟训练中心,河北 石家庄 050001)
  • 收稿日期:2018-05-30 修回日期:2018-07-13 出版日期:2019-04-25 发布日期:2019-04-25

Military named entity recognition based on bidirectional LSTM

LI Jianlong,WANG Panqing,HAN Qiyu   

  1. (Equipment Simulation Training Center,Shijiazhuang Campus of the Army Engineering University,Shijiazhuang 050001,China)

     
  • Received:2018-05-30 Revised:2018-07-13 Online:2019-04-25 Published:2019-04-25

摘要:

为了减少传统的命名实体识别需要人工制定特征的大量工作,通过无监督训练获得军事领域语料的分布式向量表示,采用双向LSTM递归神经网络模型解决军事领域命名实体的识别问题,并且通过添加字词结合的输入向量和注意力机制对双向LSTM递归神经网络模型进行扩展和改进,进而提高军事领域命名实体识别。实验结果表明,
提出的方法能够完成军事领域命名实体的识别,并且在测试集语料上的F-值达到了87.38%。

 

关键词: 命名实体识别, 长短时记忆递归神经网络, 注意力机制

Abstract:

In order to reduce the large amount of work that traditional named entity recognition needs to manually formulate features, we obtain distributed vector representations of the military domain corpus through unsupervised training, and utilize the bidirectional LSTM (BLSTM) recursive neural network model to solve the identification problem of named entities in the military field. The BLSTM recursive neural network model is extended and improved by adding wordbinding input vectors and attention mechanism to enhance the recognition of named entities in the military field. Experimental results show that the proposed method can identify named entities in the military field, and the Fvalue in the test set corpus reaches 87.38%.
 

Key words: named entity recognition, long and shortterm memory recursive neural network, attention mechanism