摘要:
在识别活动时,传统的循环神经网络RNN识别方法不考虑传感器活动数据之间依赖性强的问题,导致识别准确率降低。为了提高识别准确率,解决活动数据依赖性强的问题,用长短期记忆网络LSTM进行活动识别,LSTM在考虑当前点输入的同时考虑先前点的输出,能够保持数据之间的强依赖性。但是,LSTM在处理传感器活动数据的特征提取方面时间效率不高,而卷积神经网络CNN能共享卷积核,且可以从杂乱无章的数据中提取出明显特征向量。提出一种基于CNN-LSTM的活动识别方法CLAR,利用CNN能够很好地提取出活动序列数据中的特征向量,并将提取出的特征向量作为LSTM的输入,利用LSTM门限之间的相互作用进行活动识别,使得依赖性很强的活动数据成为活动识别的优势,进而提高活动识别的准确率和时间效率。实验表明,CLAR方法的识别准确率比单一神经网络活动识别方法的准确率提高了9%,时间平均缩短了10%。
李允,孟凡荣,张磊,邵长兴,崔淑敏,朱少杰. 基于CNN-LSTM的活动识别方法[J]. 计算机工程与科学.
LI Yun,MENG Fan-rong,ZHANG Lei,SHAO Chang-xing,CUI Shu min,ZHU Shao-jie. An activity recognition method based on CNN-LSTM[J]. Computer Engineering & Science.