• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (05): 944-950.

• 人工智能与数据挖掘 • 上一篇    

基于改进在线极限学习机的短时交通流预测模型研究

周伯荣1,程伟国2,许镇义3,4,温秀兰1   

  1. (1.南京工程学院自动化学院,江苏 南京 211100;2 南京交通职业技术学院汽车工程学院,江苏 南京 211100;
    3.合肥综合性国家科学中心人工智能研究院,安徽 合肥 230088;4.中国科学技术大学信息科学技术学院,安徽 合肥 230026)
  • 收稿日期:2020-09-01 修回日期:2020-12-21 接受日期:2022-05-25 出版日期:2022-05-25 发布日期:2022-05-24
  • 基金资助:
    国家自然科学基金(62103124,62033012,61725304,61673361,51675259);安徽省科技重大专项(201903a07020012,202003a07020009)

A short-term traffic flow prediction model based on improved online extreme learning machine

ZHOU Bo-rong1,CHENG Wei-guo2,XU Zhen-yi3,4,WEN Xiu-lan1   

  1. (1.School of Automation,Nanjing Institute of Technology,Nanjing 211100;
    2.College of Automotive Engineering,Nanjing Vocational Institute of Transport Technology,Nanjing 211100;
    3.Hefei Comprehensive National Science Center Artificial Intelligence Research Institute,Hefei 230088;
    4.School of Information Science and Technology,University of Science and Technology of China,Hefei 230026,China)
  • Received:2020-09-01 Revised:2020-12-21 Accepted:2022-05-25 Online:2022-05-25 Published:2022-05-24

摘要: 交通流信息预测是智能交通系统进行交通疏导管理的重要基础,为城市交通管理规划提供可靠的数据支持和科学的决策依据。由于交通流量数据是实时更新的增量流数据,每次更新历史数据集时都需要重新构建预测模型,消耗了大量计算资源和运行时间,为此提出一种基于改进在线顺序极限学习机的交通流预测模型(IOS-ELM),通过构建新增数据的增强特征映射关系,生成交通流动态更新特征表示空间,实现短时交通流预测模型的动态更新。利用长沙市远大一路交通流数据评估该模型,实验结果表明,IOS-ELM模型在NRMSE和MAPE的预测性能上均超过其他基准预测模型(MLP、ELM、OS-ELM和SVR),同时模型的预测耗时较小,可以保证一定实时性,满足城市道路交通流的实时准确预测的需求。

关键词: 交通流预测, 极限学习机, 智能交通

Abstract: Traffic flow information prediction is an important foundation for traffic guidance management of intelligent transportation systems, and provides reliable data support and scientific decision-making basis for urban traffic management planning. Since the traffic flow data is real-time updated incremental flow data, each time the historical data set is updated, the prediction model needs to be rebuilt, which consumes a lot of computing resources and running time. Therefore, this paper proposes an improved online sequential extreme learning machine for traffic flow prediction (IOS-ELM), which constructs the enhanced feature mapping relationship of the newly input data, generates the dynamic update feature representation space of the traffic flow, and realizes the dynamic update of the short-term traffic flow prediction model. Finally, the model is evaluated on the real-world traffic flow data of Yuanda 1st Road in Changsha, China. The experimental results show that the IOS-ELM model exceeds other baselines prediction models (MLP, ANN, ELM, OS-ELM) in the prediction performance of NRMSE and MAPE. Meanwhile, the computation prediction of IOS-ELM is less time-consuming, which can ensure a certain real-time performance and meet the needs of real-time and accurate prediction of urban road traffic flow.


Key words: traffic flow prediction, extreme learning machine, intelligent transportation system