• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 论文 • 上一篇    下一篇

改进鱼群算法优化的ELM在乳腺肿瘤辅助诊断中的应用研究

周华平,袁月   

  1. (安徽理工大学计算机科学与工程学院, 安徽 淮南 232001)
  • 收稿日期:2015-12-07 修回日期:2016-05-03 出版日期:2017-11-25 发布日期:2017-11-25
  • 基金资助:

    国家自然科学基金(5574257);安徽理工大学中青年骨干教师

Application of ELM in computer-aided diagnosis of breast
tumors based on improved fish swarm optimization algorithm

ZHOU Hua-ping,YUAN Yue   

  1. (College of Computer Science and Engineering,Anhui University of Science and Technology,Huainan 232001,China)
  • Received:2015-12-07 Revised:2016-05-03 Online:2017-11-25 Published:2017-11-25

摘要:

针对传统极限学习机的输入权值矩阵和隐含层偏差是随机给定进而可能会导致在乳腺肿瘤的辅助诊断应用研究中存在精度明显不足的情况,提出用改进鱼群算法优化ELM方法。在完成对乳腺肿瘤有效的辅助诊断的过程中,本研究工作充分利用ELM能快速地完成训练过程且具有很好的泛化能力的特点,并结合用改进鱼群算法对ELM的隐含层偏差进行优化,构造出了乳腺肿瘤与从乳腺肿瘤样本数据中提取的10个特征向量之间的非线性映射关系。将本文提出的乳腺肿瘤识别方法的仿真结果与AFSA-ELM方法、ELM方法、LVQ方法、BP方法的仿真结果分别从识别准确率、假阴性率、学习速度三个方面做对比分析,仿真结果表明,本文所提方法对乳腺肿瘤诊断具有较高的分类识别准确率、假阴性率以及较快的学习速率。

 

关键词: 改进的鱼群算法, 极限学习机, 辅助诊断, 乳腺肿瘤

Abstract:

Given that the randomly selected input weight matrix and hidden layer deviation of the traditional extreme learning machine (ELM) lead to inaccurate diagnosis of breast cancer, we propose an ELM optimization method based on an improved fish swam optimization algorithm(AFSA-ELM). In the diagnosis of breast cancer, the advantages of the ELM including fast learning speed, good generalization performance and low adjustment parameters are fully utilized. In addition, the input layer weights and the hidden layer deviation of the ELM are optimized by the improved fish swarm algorithm, and the nonlinear mapping relationship between the breast tumor and the 10 eigenvectors extracted from the breast tumor sample data is constructed. Compared with the ELM、LVQ and BP neural network, the simulation results show that the proposed method has higher recognition accuracy, lower false negative rate and faster learning speed in breast tumor diagnosis.
 

Key words: improved fish swarm algorithm, extreme learning machine(ELM), aided diagnosis, breast tumor