摘要:
针对传统极限学习机的输入权值矩阵和隐含层偏差是随机给定进而可能会导致在乳腺肿瘤的辅助诊断应用研究中存在精度明显不足的情况,提出用改进鱼群算法优化ELM方法。在完成对乳腺肿瘤有效的辅助诊断的过程中,本研究工作充分利用ELM能快速地完成训练过程且具有很好的泛化能力的特点,并结合用改进鱼群算法对ELM的隐含层偏差进行优化,构造出了乳腺肿瘤与从乳腺肿瘤样本数据中提取的10个特征向量之间的非线性映射关系。将本文提出的乳腺肿瘤识别方法的仿真结果与AFSA-ELM方法、ELM方法、LVQ方法、BP方法的仿真结果分别从识别准确率、假阴性率、学习速度三个方面做对比分析,仿真结果表明,本文所提方法对乳腺肿瘤诊断具有较高的分类识别准确率、假阴性率以及较快的学习速率。
周华平,袁月. 改进鱼群算法优化的ELM在乳腺肿瘤辅助诊断中的应用研究[J]. 计算机工程与科学.
ZHOU Hua-ping,YUAN Yue.
Application of ELM in computer-aided diagnosis of breast
tumors based on improved fish swarm optimization algorithm
[J]. Computer Engineering & Science.