• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2024, Vol. 46 ›› Issue (02): 325-337.

• 人工智能与数据挖掘 • 上一篇    下一篇

中文电子病历信息提取方法研究综述

吉旭瑞,魏德健,张俊忠,张帅,曹慧   

  1. (山东中医药大学智能与信息工程学院,山东  济南 250355)
  • 收稿日期:2022-06-09 修回日期:2022-08-25 接受日期:2024-02-25 出版日期:2024-02-25 发布日期:2024-02-24
  • 基金资助:
    国家自然科学基金(81973981,82074579);山东省中医药科技项目(2020M006)

Research progress on information extraction methods of Chinese electronic medical records

JI Xu-rui,WEI De-jian,ZHANG Jun-zhong,ZHANG Shuai,CAO Hui   

  1. (College of Intelligence and Information Engineering,
    Shandong University of Traditional Chinese Medicine,Ji nan 250355,China)
  • Received:2022-06-09 Revised:2022-08-25 Accepted:2024-02-25 Online:2024-02-25 Published:2024-02-24

摘要: 电子病历里承载的大量医疗信息能够帮助医生更好地了解患者的情况,辅助医生进行临床诊断。作为中文电子病历信息提取的2大核心任务,命名实体识别和实体关系抽取的目标是识别出电子病历文本中的医学实体并提取出各个实体间的医学关系。首先,系统阐述了中文电子病历的研究现状,指出命名实体识别和实体关系抽取2大任务在中文电子病历信息提取中所发挥的重要作用。随后,介绍了面向中文电子病历信息提取的命名实体识别和关系抽取算法的最新研究成果,并分析了每个阶段各个模型的优缺点。最后,讨论了中文电子病历现阶段所存在的问题并对未来的研究趋势进行展望。

关键词: 中文电子病历, 命名实体识别, 实体关系抽取, 自然语言处理, 深度学习

Abstract: The large amount of medical information carried in the electronic medical record can help doctors better understand the situation of patients and assist doctors in clinical diagnosis. As the two core tasks of Chinese electronic medical record (EMR) information extraction, named entity recognition and entity relationship extraction have become the main research directions. Its main goal is to identify the medical entities in the EMR text and extract the medical relationships between the entities. This paper systematically expounds the research status of Chinese electronic medical record, points out the important role of named entity recognition and entity relationship extraction in Chinese electronic medical record information extraction, then introduces the latest research results of named entity recognition and relationship extraction algorithm for Chinese electronic medical record information extraction, and analyzes the advantages and disadvantages of each model in each stage. In addition, the current problems of Chinese EMR are discussed, and the future research trend is prospected.


Key words: Chinese electronic medical record, named entity identification, entity relationship extraction, natural language processing, deep learning