• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2024, Vol. 46 ›› Issue (02): 338-352.

• 人工智能与数据挖掘 • 上一篇    下一篇

基于元学习个性化推荐研究综述

吴国栋,刘旭旭,毕海娇,范维成,涂立静   

  1. (安徽农业大学信息与人工智能学院,安徽 合肥 230036)
  • 收稿日期:2022-05-30 修回日期:2022-11-02 接受日期:2024-02-25 出版日期:2024-02-25 发布日期:2024-02-24
  • 基金资助:
    国家自然科学基金 (31671589);安徽省自然科学基金(2108085MF209);安徽省科技重大专项(202103b06020013);嵌入式系统与服务计算教育部重点实验室开放基金 (ESSCKF2020-03)

Review of personalized recommendation research based on meta-learning

WU Guo-dong,LIU Xu-xu,BI Hai-jiao,FAN Wei-cheng,TU Li-jing   

  1. (School of Information and Artificial Intelligence,Anhui Agricultural University,Hefei 230036,China)

  • Received:2022-05-30 Revised:2022-11-02 Accepted:2024-02-25 Online:2024-02-25 Published:2024-02-24

摘要: 推荐系统作为缓解“信息过载”的工具,为用户过滤冗余信息并提供个性化服务,近年来得到了广泛应用。然而,实际推荐场景中,通常存在冷启动与不同推荐算法难以根据实际环境自适应选择等问题。元学习因其具有基于少量训练样本快速学会新知识和技能的优点,被越来越多地应用于推荐系统相关研究中。对现有基于元学习技术缓解推荐系统冷启动问题以及自适应推荐问题的主要研究进行探讨。首先,分析了基于元学习推荐在上述2个方面已取得的相关研究进展;然后,指出了现有元学习推荐研究存在难以适应复杂任务分布、计算代价高和容易陷入局部最优等问题;最后,对元学习在推荐系统领域的一些最新研究方向进行了展望。

关键词: 元学习, 个性化推荐, 冷启动, 自适应算法选择

Abstract: As a tool to alleviate “information overload”, recommendation system provides personalized recommendation services for users to filter redundant information, and has been widely used in recent years. However, in actual recommendation scenarios, there are often issues such as cold start and difficulty in adaptively selecting different recommendation algorithms based on the actual environment. Meta-learning, which has the advantage of quickly learning new knowledge and skills from a small number of training samples, is increasingly being applied in research related to recommendation systems. This paper discusses the main research on using meta-learning techniques to alleviate cold start problems and adaptive recommendation issues in recommendation systems. Firstly, it analyzes the relevant research progress made in meta-learning-based recommendations in these two areas. Then, it points out the challenges faced by existing meta-learning recommendation research, such as difficulty in adapting to complex task distributions, high computational costs, and a tendency to fall into local optima. Finally, it provides an outlook on some of the latest research directions in meta-learning for recommendation systems.

Key words: meta-learning, personalized recommendation, cold start, self-adaptive algorithm selection