计算机工程与科学 ›› 2024, Vol. 46 ›› Issue (07): 1218-1228.
柴旭清1,2,3,乔一航1,2,3,范黎林1,2,3
CHAI Xu-qing1,2,3,QIAO Yi-hang1,2,3,FAN Li-lin1,2,3
摘要: 高性能应用程序的传统性能分析方法因分析过程存在额外开销和分析结果不准确等缺陷,致使用户耗费更多的时间和领域知识。为解决以上问题,将程序的性能分析问题转化成高维特征下非平衡小样本数据集的多分类问题,采集500条包含程序运行时进程切换次数、内存利用率、磁盘I/O负载等7种性能数据,经PCA降维等数据预处理后,使用随机森林分类器训练程序性能问题分析模型。实验验证该模型可识别出内存利用率过高、磁盘I/O负载过重等5类性能问题。为评估模型的指导有效性,分别采集HotSpot3D程序和LU-Decomposition程序运行时产生的性能数据,并根据模型输出结果指导,分别基于运行级和编译级优化2个验证程序运行。实验结果表明,所提方法可有效指导优化程序的运行性能,2个验证程序的加速比分别为1.056和5.657。