• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2024, Vol. 46 ›› Issue (10): 1825-1834.

• 图形与图像 • 上一篇    下一篇

基于YOLOv8改进的打架斗殴行为识别算法:EFD-YOLO

曹雨淇1,徐慧英1,朱信忠1,黄晓2,陈晨1,周思瑜1,盛轲1   

  1. (1.浙江师范大学计算机科学与技术学院(人工智能学院),浙江 金华 321004;2.浙江师范大学教育学院,浙江 金华 321004)
  • 收稿日期:2023-08-22 修回日期:2024-01-07 接受日期:2024-10-25 出版日期:2024-10-25 发布日期:2024-10-29
  • 基金资助:
    国家自然科学基金(62376252,61976196);浙江省自然科学基金重点项目(LZ22F030003);国家级大学生创新创业训练计划项目创新训练重点项目(202310345042)

An improved fighting behavior recognition algorithm based on YOLOv8: EFD-YOLO

CAO Yu-qi1,XU Hui-ying1,ZHU Xin-zhong1,HUANG Xiao2,CHEN Chen1,ZHOU Si-yu1,SHENG Ke1   

  1. (1.School of Computer Science and Technology(School of Intelligence),Zhejiang Normal University,Jinhua 321004;2.College of Education,Zhejiang Normal University,Jinhua 321004,China)
  • Received:2023-08-22 Revised:2024-01-07 Accepted:2024-10-25 Online:2024-10-25 Published:2024-10-29

摘要: 在当今社会,打架斗殴检测技术对于防范暴力事件和冲突至关重要。结合监控摄像头和目标检测,能够实时监测人群活动,从而有效预防潜在威胁。因此,提出了一种基于YOLOv8改进的打架斗殴行为识别算法EFD-YOLO。EFD-YOLO采用EfficientRep替换主干网络,提高了特征提取的效率,并在监控范围内实现准确实时的特征提取。引入FocalNeXt焦点模块,通过深度卷积和跳跃连接的结合,解决了遮挡问题和多尺度特征需求问题。采用Focal-DIoU作为边界框回归损失函数,在复杂情况下减少了误检的问题。实验结果显示,EFD-YOLO算法相较于YOLOv8n在mAP@0.5指标上提升了4.2%,在mAP@0.5:0.95指标上提升了2.5%,满足关键场所中实时检测打架斗殴行为的需求。

关键词: 目标检测, 打架斗殴, YOLOv8, EfficientRep, FocalNeXt, Focal-DIoU

Abstract: In today's society, fighting behavior detection technology is crucial for preventing violent incidents and conflicts. By integrating surveillance cameras with object detection, real-time monitoring of crowd activities becomes possible, effectively preempting potential threats. Based on YOLOv8, EFD-YOLO employs EfficientRep to replace the backbone network, enhancing the efficiency of feature extraction and enabling accurate real-time feature extraction within the surveillance area. The introduction of the FocalNeXt focus module, through a combination of deep convolutions and skip connections, addresses occlusion issues and multi-scale feature requirements. Furthermore, Focal-DIoU is adopted as the bounding box regression loss function, reducing false detections in complex scenarios. Experimental results show that the EFD-YOLO algorithm outperforms YOLOv8n by 4.2% in the mAP@0.5 metric and 2.5% in the mAP@0.5:0.95 metric, making it suitable for real-time detection of fighting behaviors in critical locations.

Key words: object detection, fighting;YOLOv8;EfficientRep;FocalNeXt;Focal-DIoU