计算机工程与科学 ›› 2024, Vol. 46 ›› Issue (10): 1825-1834.
曹雨淇1,徐慧英1,朱信忠1,黄晓2,陈晨1,周思瑜1,盛轲1
CAO Yu-qi1,XU Hui-ying1,ZHU Xin-zhong1,HUANG Xiao2,CHEN Chen1,ZHOU Si-yu1,SHENG Ke1
摘要: 在当今社会,打架斗殴检测技术对于防范暴力事件和冲突至关重要。结合监控摄像头和目标检测,能够实时监测人群活动,从而有效预防潜在威胁。因此,提出了一种基于YOLOv8改进的打架斗殴行为识别算法EFD-YOLO。EFD-YOLO采用EfficientRep替换主干网络,提高了特征提取的效率,并在监控范围内实现准确实时的特征提取。引入FocalNeXt焦点模块,通过深度卷积和跳跃连接的结合,解决了遮挡问题和多尺度特征需求问题。采用Focal-DIoU作为边界框回归损失函数,在复杂情况下减少了误检的问题。实验结果显示,EFD-YOLO算法相较于YOLOv8n在mAP@0.5指标上提升了4.2%,在mAP@0.5:0.95指标上提升了2.5%,满足关键场所中实时检测打架斗殴行为的需求。