• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2024, Vol. 46 ›› Issue (10): 1835-1842.

• 图形与图像 • 上一篇    下一篇

基于改进蚁群算法的长航程无人船路径规划

乔珍,尹传忠,仇鑫   

  1. (上海海事大学交通运输学院,上海 201306) 
  • 收稿日期:2023-09-18 修回日期:2023-10-25 接受日期:2024-10-25 出版日期:2024-10-25 发布日期:2024-10-29
  • 基金资助:
    教育部人文社科规划项目(23A10254002);国家自然科学基金(72074141)

Path planning of long-range unmanned ship based on improved ant colony algorithm

QIAO Zhen,YIN Chuan-zhong,QIU Xin   

  1. Addressing the issue of insufficient endurance for unmanned surface vehicles (USVs), an angle-priority ant colony optimization algorithm based on reinforcement learning is proposed to plan long-range paths for USVs. The Canny operator is employed to extract environmental information, and a combination of pixel grayscale weighted averaging and Gaussian filtering smoothing is applied to analyze the gradients in the image and extract edge features. The ginput function is then used to extract the edge coordinates. Based on the MAKLINK graph theory principle, the edge coordinates are defined as nodes, and the link lines and path points between nodes are used to represent the structure and connectivity of the navigation environment, thereby establishing a navigation environment model. By comparing the shortest paths obtained under the influence of different heuristic factors in the navigation environment, the optimal combination of heuristic factors for the algorithm is determined. An angle-priority mechanism is introduced to improve convergence speed, and reinforcement learning reward and penalty coefficients are utilized to adjust pheromone concen-tration, optimizing the algorithm flow and generating the optimal path. Experimental results demonstrate that the improved algorithm yields a USV navigation path with smooth corners, enhances the endurance of the USV by 4.6%, and accelerates the algorithm convergence speed by 68.9%.

  • Received:2023-09-18 Revised:2023-10-25 Accepted:2024-10-25 Online:2024-10-25 Published:2024-10-29

摘要: 针对无人船续航能力不足问题,提出基于强化学习的角度优先改进蚁群算法,规划长航程无人船路径。采用Canny算子提取环境信息,应用像素的灰度加权平均及高斯滤波平滑处理的方法,分析图像中的梯度并提取边缘特征,采用ginput函数提取边缘坐标;基于MAKLINK图论原理,以边缘坐标为节点,定义节点之间的链接线与路径点表示航行环境的结构和连接关系,建立航行环境模型;对比航行环境中不同启发因子作用下取得的最短路径,确定算法最优启发因子组合;引入角度优先机制提高收敛速度、强化学习奖励与惩罚系数调节信息素浓度对算法流程进行优化,生成最优路径。实验结果显示,该改进算法得到的无人船航行路径拐角平滑,无人船续航能力提升4.6%,算法收敛速度提升68.9%。

关键词: 无人船, 续航能力, 路径规划, 环境建模, 改进蚁群算法

Abstract: unmanned ship;endurance;path planning;environmental modeling;improved ant colony algorithm

Key words: (College of Transport &, Communications,Shanghai Maritime University,Shanghai 201306,China)