构造了一组由三个含参数m的函数构成的函数组, 该函数组线性无关, 称之为mB基。mB基具有非负性、规范性、对称性等良好的性质, 而且具有非常特殊的端点性质。基于mB基定义了一种新的样条曲线, 称之为mB曲线。mB曲线段可以转化为Bézier曲线的形式, 借助Bézier曲线的de Casteljau算法, 给出了mB曲线段的递推求值算法。mB曲线具有与二次均匀B样条曲线相同的端点行为, 即插值于控制多边形首末边的中点, 与控制多边形的首末边相切。另外, mB曲线的形状和连续性均可以通过参数m进行自由调节, 而且调节方式既可以是整体的, 又可以是局部的。利用张量积方法, 将mB曲线推广到了曲面, 称之为mB曲面。mB曲面具有与mB曲线类似的性质。