J4 ›› 2010, Vol. 32 ›› Issue (1): 77-79.doi: 10.3969/j.issn.1007130X.2010.
• 论文 • 上一篇 下一篇
收稿日期:
修回日期:
出版日期:
发布日期:
通讯作者:
作者简介:
Received:
Revised:
Online:
Published:
摘要:
图像基学习是图像特征提取与表示的重要方法之一。非负稀疏编码不仅具有标准稀疏编码算法的自适应性、空间的局部性、方向性和频域的带通性,而且更能反应哺乳动物的视觉机制。本文在非负稀疏编码的基础上,利用经验模态分解技术加入了图像的结构信息,提出了结合经验模态分解的非负稀疏编码算法,保证了系数矩阵的稀疏性与所提取图像特征的结构性。学习得到的图像基不仅具有非负稀疏编码的特征,而且更好地表示出图像的结构信息。
关键词: 图像基, 独立分量分析, 稀疏编码, 经验模态分解
Abstract:
Image base learning is one of the important ways of image feature extraction and image expression. Nonnegative sparse coding not only features the adaptability of standard sparse coding, spatial localization, orientation, and bandpass in different spatial frequency bands, but also responds to mammal's visual mechanism well. On the basis of the nonnegative sparse coding, this paper joins the image structure information using the experience modality decomposition technology, proposes a combination of EMD and the nonnegative sparse coding algorithm, and ensures the sparseness of the coefficient matrix and the structural characteristics of the image bases extracted. The learned image bases not only have the characteristic of nonnegative sparse coding, but express the image's structure information well.
Key words: image base;independent component analysis;sparse coding;experience modality decomposition
中图分类号:
TP391.4
晁永国, 戴芳, 韩舒然, 何静. 改进的非负稀疏编码图像基学习算法[J]. J4, 2010, 32(1): 77-79.
CHAO Yong-Guo, DAI Fang, HAN Shu-Ran, HE Jing. Image Base Learning Based on Improved NonNegative Sparse Coding[J]. J4, 2010, 32(1): 77-79.
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://joces.nudt.edu.cn/CN/10.3969/j.issn.1007130X.2010.
http://joces.nudt.edu.cn/CN/Y2010/V32/I1/77