• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2010, Vol. 32 ›› Issue (1): 77-79.doi: 10.3969/j.issn.1007130X.2010.

• 论文 • 上一篇    下一篇

改进的非负稀疏编码图像基学习算法

  

  1. (西安理工大学,陕西 西安 710054)
  • 收稿日期:2008-09-03 修回日期:2008-11-18 出版日期:2010-01-18 发布日期:2010-01-18
  • 通讯作者: 晁永国 E-mail:chao9698@163.com
  • 作者简介:晁永国(1978),男,河南鹤壁人,硕士生,研究方向为图像处理。

Image Base Learning Based on Improved NonNegative Sparse Coding

  1. (Xi’an University of Technology,Xi’an 710054,China)
  • Received:2008-09-03 Revised:2008-11-18 Online:2010-01-18 Published:2010-01-18

摘要:

图像基学习是图像特征提取与表示的重要方法之一。非负稀疏编码不仅具有标准稀疏编码算法的自适应性、空间的局部性、方向性和频域的带通性,而且更能反应哺乳动物的视觉机制。本文在非负稀疏编码的基础上,利用经验模态分解技术加入了图像的结构信息,提出了结合经验模态分解的非负稀疏编码算法,保证了系数矩阵的稀疏性与所提取图像特征的结构性。学习得到的图像基不仅具有非负稀疏编码的特征,而且更好地表示出图像的结构信息。

关键词: 图像基, 独立分量分析, 稀疏编码, 经验模态分解

Abstract:

Image base learning is one of the important ways of image feature extraction and image expression. Nonnegative sparse coding not only features  the adaptability of standard sparse coding, spatial localization, orientation, and bandpass in different spatial frequency bands, but also responds to mammal's visual mechanism well. On the basis of the nonnegative sparse coding, this paper  joins the image structure information using the experience modality decomposition technology, proposes a combination of EMD and the nonnegative sparse coding algorithm, and ensures the sparseness of the coefficient matrix and the structural characteristics of the image bases extracted. The learned image bases not only have the characteristic of nonnegative sparse coding, but express the image's structure information well.

Key words: image base;independent component analysis;sparse coding;experience modality decomposition

中图分类号: