• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2015, Vol. 37 ›› Issue (02): 348-353.

• 论文 • 上一篇    下一篇

基于卷积计算的多层脉冲神经网络的监督学习

张玉平,蔺想红   

  1. (西北师范大学计算机科学与工程学院,甘肃 兰州 730070)
  • 收稿日期:2014-03-14 修回日期:2014-06-30 出版日期:2015-02-25 发布日期:2015-02-25
  • 基金资助:

    国家自然科学基金资助项目(61165002)

Supervised learning based on convolution calculation
for multilayer spiking neural networks   

ZHANG Yuping,LIN Xianghong   

  1. (College of Computer Science & Engineering,Northwest Normal University,Lanzhou 730070,China)
  • Received:2014-03-14 Revised:2014-06-30 Online:2015-02-25 Published:2015-02-25

摘要:

针对脉冲神经元基于精确定时的多脉冲编码信息的特点,提出了一种基于卷积计算的多层脉冲神经网络监督学习的新算法。该算法应用核函数的卷积计算将离散的脉冲序列转换为连续函数,在多层前馈脉冲神经网络结构中,使用梯度下降的方法得到基于核函数卷积表示的学习规则,并用来调整神经元连接的突触权值。在实验部分,首先验证了该算法学习脉冲序列的效果,然后应用该算法对Iris数据集进行分类。结果显示,该算法能够实现脉冲序列复杂时空模式的学习,对非线性模式分类问题具有较高的分类正确率。

关键词: 脉冲神经网络, 监督学习, 卷积计算, 梯度下降

Abstract:

Spiking neuron has precise timing characteristics of multispiking coding information.According to this feature, a new supervised learning algorithm based on convolution calculation for multilayer spiking neural networks is proposed.The algorithm uses the convolution calculation of the kernel functions to convert the discrete spiking sequence to a continuous function;in the network architecture consisting of a multilayer feedforward network of spiking neurons,the gradient method based on kernel function convolution is adopted to obtain learning rules and adjust the synaptic weights of neuron connections.In the experiment,effectiveness of the algorithm for learning spiking sequence is verified,and then the algorithm is applied to classify the Iris data set.The results show that the algorithm enables the learning of complex spatiotemporal patterns of spiking sequence,and it has high classification accuracy for nonlinear pattern classification problem

Key words: spiking neural networks;supervised learning;convolution calculation;gradient descent