• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2016, Vol. 38 ›› Issue (04): 667-672.

• 论文 • 上一篇    下一篇

基于位置社交网络的地点推荐算法

王森   

  1. (重庆理工大学计算机科学与技术学院,重庆 400054)
  • 收稿日期:2015-04-07 修回日期:2015-08-11 出版日期:2016-04-25 发布日期:2016-04-25
  • 基金资助:

    国家自然科学基金(61173040)

A location recommendation algorithm
based on locationbased social networks 

WANG Sen   

  1. (School of Computer Scinece & Engineering,Chongqing University of Technology,Chongqing 400054,China)
  • Received:2015-04-07 Revised:2015-08-11 Online:2016-04-25 Published:2016-04-25

摘要:

目前基于协同过滤的地点推荐算法存在难以准确估算用户偏好、推荐结果准确性不高等问题。改进了传统协同过滤中相似用户计算方法,在迭代过程中分别计算用户相似度和地点相似度的值,并不断交叉调整对方的值,直至收敛。该方法能够在稀疏的数据集下准确计算用户相似性。此外,在topN推荐阶段,同时考虑了用户的兴趣度和推荐地点离用户所在地距离的影响,并设置阈值控制二者的权重,自适应地产生推荐结果。实验表明,与其它方法相比该方法能够获得更好的推荐效果。

关键词: 位置社交网络, 地点推荐, 协同过滤

Abstract:

The existing location recommendation algorithms based on collaborative filtering have many problems, such as difficulty in estimating users preference and low recommendation accuracy. In order to improve the traditional similarity calculation algorithms for users, we propose a location recommendation algorithm. We firstly calculate user similarity and location similarity separately, and at the same time, conduct  cross adjustment to the two values continuously till convergence is achieved. The proposed algorithm is more effective for sparse data. In addition, we also take into account the user interest and the distance of the recommended location, and set a threshold to control weights of the two factors so as to adaptively generate recommendation lists. Experimental results show that compared with others, our algorithm can achieve better recommendation results.

Key words: locationbased social networks; location recommendation;collaborative filtering