J4 ›› 2016, Vol. 38 ›› Issue (04): 667-672.
王森
WANG Sen
摘要:
目前基于协同过滤的地点推荐算法存在难以准确估算用户偏好、推荐结果准确性不高等问题。改进了传统协同过滤中相似用户计算方法,在迭代过程中分别计算用户相似度和地点相似度的值,并不断交叉调整对方的值,直至收敛。该方法能够在稀疏的数据集下准确计算用户相似性。此外,在topN推荐阶段,同时考虑了用户的兴趣度和推荐地点离用户所在地距离的影响,并设置阈值控制二者的权重,自适应地产生推荐结果。实验表明,与其它方法相比该方法能够获得更好的推荐效果。