• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2016, Vol. 38 ›› Issue (05): 1031-1038.

• 论文 • 上一篇    下一篇

基于Voronoi图的障碍不确定数据的聚类算法

李宇涵,孙冬璞   

  1. (哈尔滨理工大学计算机科学与技术学院,黑龙江 哈尔滨 150080)
  • 收稿日期:2015-06-17 修回日期:2015-08-20 出版日期:2016-05-25 发布日期:2016-05-25
  • 基金资助:

    黑龙江省自然科学基金(F201302);黑龙江省教育厅科学研究项目(12541128)

A clustering algorithm of uncertain data with
obstacles based on Voronoi diagram     

LI Yuhan,SUN Dongpu   

  1. (School of Computer Science and Technology,Harbin University of Science and Technology,Harbin 150080,China)
  • Received:2015-06-17 Revised:2015-08-20 Online:2016-05-25 Published:2016-05-25

摘要:

数据采集过程中普遍存在不确定性,并且在现实地理空间中,不确定数据之间可能存在障碍物间隔。为解决障碍空间中不确定数据的聚类问题,提出APPGCUO算法,该算法包括三个过程:在障碍物约束下采用R树节点最小最大值方法提出的RPTOUCure算法,用以生成局部最优解,提高生成局部最优解的效率;继而利用近似骨架的理论提出GIABO算法,以局部最优解生成有效初始解,避免划分聚类算法中任意初始解的不足;最后结合Voronoi图的特性提出VPTKMediods算法,减少不确定数据的积分运算量。实验结果表明,APPGCUO算法具有较高的聚类效率和质量。

关键词: 不确定数据, 聚类, 障碍物, R树, Voronoi图

Abstract:

There is widespread uncertainty in the process of data collection, and there may be obstacles as barriers between uncertain data which are in reality geographical space. In order to solve the problem of clustering uncertain data in space with obstacles, we propose an approximate backbone guided Heuristic clustering algorithm for uncertain data with obstacles (APPGCUO), which includes three processes: using the Rtree node minmax method to propose the Rtree pruning techniquecure for uncertain data with obstacles (RPTOUCure), which is able to generate local optimal solution and improves its efficiency; then utilizing the theory of the approximate skeleton to present the  generate  initialization based on approximate backbone with obstacles (GIABO) which is in a position to generate the initial solution based on the local optimal solution, meanwhile can avoid the shortage of random initial solution of the partition clustering algorithm; finally combining the pruning features of the Voronoi diagram to present the Voronoi pruning techniqueKMediods (VPTKMediods) which can reduce the integral computation of uncertain data. Experimental results show that the APPGCUO algorithm has high clustering efficiency and quality.

Key words: uncertain data, clustering;obstacle;Rtree;Voronoi diagram