• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2016, Vol. 38 ›› Issue (06): 1200-1206.

• 论文 • 上一篇    下一篇

一种基于分类器投票的车牌定位方法

王钦民,李宽,杨灿群   

  1. (国防科学技术大学计算机学院,湖南 长沙 410073)
  • 收稿日期:2015-12-16 修回日期:2016-02-13 出版日期:2016-06-25 发布日期:2016-06-25
  • 基金资助:

    国家自然科学基金(61303189)

A license plate location method based on classifier voting      

WANG Qinmin,LI Kuan,YANG Canqun   

  1. (College of Computer,National University of Defense Technology,Changsha 410073,China)
  • Received:2015-12-16 Revised:2016-02-13 Online:2016-06-25 Published:2016-06-25

摘要:

为解决类似车牌和失真车牌的定位难题,提出一种基于分类器投票的车牌定位方法。方法从两个方面提升车牌定位精度:首先,针对类似车牌和失真车牌的图像特点,提出两种新的车牌图像描述子,针对性地提升两类车牌的定位效果;其次,使用多种描述子分别训练SVM分类器,采用分类器投票融合的方式决定最终分类结果,进一步提升定位准确度。实验结果表明:(1)相比传统的小波和LBP车牌图像描述子,所提算法有效地提高了失真车牌的定位精度,降低了类似车牌的识别错误率。(2)构建的投票融合分类器方法使车牌图像的分类错误率从单个描述子最优的305%下降到了08%。

关键词: 分类器, 描述子, 车牌定位, 哈尔小波

Abstract:

We propose a votingbased multiclassifier method to improve the location accuracy of similar and distorted license plates. We enhance the license plate location accuracy from two aspects. First, two new plate descriptors are proposed according to the image characteristics of similar license plates and distorted license plates, which particularly promotes the location performance of the two types of license plates. Then several SVM classifiers are trained using different descriptors respectively, and a votingbased fusion mechanism is adopted to make the final decision, thus further enhancing the location accuracy.  Experimental results show that: 1) compared with the traditional wavelet and LBP license plate descriptors, the two proposed descriptors can effectively improve the location accuracy of distorted plates, and reduce the error rate of similar plates; 2) the votingbased fusion mechanism can effectively reduce the classification error rate of candidate plate regions from 3.05% to 0.8%.

Key words: classifier;descriptor;license plate location;Haarwavelet