• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2016, Vol. 38 ›› Issue (07): 1356-1361.

• 论文 • 上一篇    下一篇

一种基于深度学习的多尺度深度网络的场景标注算法

马成虎,董洪伟   

  1. (江南大学物联网工程学院,江苏 无锡 214000)
  • 收稿日期:2015-06-12 修回日期:2015-08-12 出版日期:2016-07-25 发布日期:2016-07-25

A scene labeling algorithm for multiscale deep
networks based on deep learning 

MA Chenghu,DONG Hongwei   

  1. (College of Internet of Things,Jiangnan University,Wuxi 214000,China)
  • Received:2015-06-12 Revised:2015-08-12 Online:2016-07-25 Published:2016-07-25

摘要:

针对场景标注中如何产生良好的内部视觉信息表达和有效利用上下文语义信息两个至关重要的问题,提出一种基于深度学习的多尺度深度网络监督模型。与传统多尺度方法不同,模型主要由两个深度卷积网络组成:首先网络考虑全局信息,提取大尺度图像低层特征;其次网络利用图像局部信息,结合低层特征获取一组稠密的、完备的图像特征,有效地捕获图像像素的纹理特征、颜色特征和上下文信息。对比许多经典方法,该算法不依赖图像分割技术和人工制作特征,在Stanford Background Dataset取得了很好的效果。

关键词: 场景标注, 多尺度深度网络, 监督学习, 深度卷积网络

Abstract:

There are two primary problems  in scene labeling: how to produce good internal representations of the visual information and how to use contextual information efficiently. To solve the two problems, we present a scene labeling algorithm for multiscale deep networks based on deep learning, a supervising model. Unlike traditional multiscale methods, the model contains two deep convolutional networks: one takes the global information into account and extracts the lowlevel features of the largescale image; and the other one combines the local information of the image with the low level features, and obtains a set of dense and complete image features, thus a powerful representation that captures texture, color and contextual information is achieved. Compared with many standard approaches, the proposal does not depend on segmentation technique or any task specific features. Our approach yields good performance on the Stanford Background Dataset.

Key words: scene labeling;multiscale deep network;supervised learning;deep convolutional network