• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 论文 • 上一篇    下一篇

一种基于时序行为的流过程协同重构算法

黄黎1,2,谭文安1,许小媛2   

  1. (1.南京航空航天大学计算机科学与技术学院,江苏 南京 211106;
    2.江苏开放大学信息与机电工程学院,江苏 南京 210017)
  • 收稿日期:2015-12-28 修回日期:2016-03-17 出版日期:2017-05-25 发布日期:2017-05-25
  • 基金资助:

    国家自然科学基金(61672022);江苏省高校自然科学研究面上项目(15KJB520005;14KJD520001)

Cooperative streaming process reengineering
 based on sequential behaviors

HUANG Li1,2,TAN Wen-an1,XU Xiao-yuan2   

  1. (1.School of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 211106;
    2.School of Information and Electromechanical Engineering,Jiangsu Open University,Nanjing 210017,China)
  • Received:2015-12-28 Revised:2016-03-17 Online:2017-05-25 Published:2017-05-25

摘要:

过程流数据具有实时性、连续性和时序性等特征,使得传统过程挖掘算法难以发现隐含信息和演化过程。针对流过程模型的动态演化和重构要求,提出了一种基于时序行为分析的自适应混合启发式协同优化算法。首先定义演化流过程模型,基于日志活动间的隐含依赖关系改进过程逻辑的启发式挖掘规则,然后定义基于时序行为的老化因子,并引入高斯变异的多种群协作的自适应策略,改进粒子群优化算法的全局和局部精确寻优能力,实现优化和重构过程模型。该算法在四个典型测试函数上进行了对比实验,结果表明该算法在流过程挖掘中具有更好的收敛性和稳定性。

关键词: 过程挖掘, 多粒子群协同, 启发式挖掘, 时序行为, 高斯变异

Abstract:

Stream data possesses realtime, continuous and sequential features. To detect implicit information and dynamic process in stream data, we propose a hybrid heuristic cooperative optimization algorithm based on time series prediction with selfadapting for stream process reengineering. Firstly, we define the stream process model, and improve the heuristic miner rules in the process logic based on the implicit dependency relation among log activities. Secondly, we define the ageing factor based on sequential behaviors and introduce the multiple particle swarm cooperation selfadapting strategy based on Gauss mutation to improve the local and global search capacity of the PSO algorithm, thus the process model is optimized and reengineered. Comparative experiments on four benchmark functions varify the better convergence and stability of the proposed algorithm in streaming process mining.

Key words: process mining, multiple particle swarm cooperation, heuristic miner, time series behavior, Gauss mutation