• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2016, Vol. 38 ›› Issue (06): 1171-1176.

• 论文 • 上一篇    下一篇

基于柯西-高斯动态消减变异的果蝇优化算法研究

杜晓昕,张剑飞,郭媛,金梅   

  1. (齐齐哈尔大学计算机与控制工程学院,黑龙江 齐齐哈尔 161006)
  • 收稿日期:2015-07-10 修回日期:2015-08-27 出版日期:2016-06-25 发布日期:2016-06-25
  • 基金资助:

    黑龙江省自然科学基金(F201333);教育部人文社会科学青年基金(14YJC630188)

A fruit fly optimization algorithm with
CauchyGaussian dynamic reduction mutation

DU Xiaoxin,ZHANG Jianfei,GUO Yuan,JIN Mei   

  1. (College of Computer and Control Engineering,Qiqihar University,Qiqihar 161006,China)
  • Received:2015-07-10 Revised:2015-08-27 Online:2016-06-25 Published:2016-06-25

摘要:

针对果蝇优化算法易陷入局部极值收敛速度减慢的不足,结合柯西变异和高斯变异的各自优点,提出了变异效能系数和柯西高斯动态消减变异因子等概念,进而提出了一种柯西高斯动态消减变异方法,将该方法应用于改进果蝇优化算法,提出了一种基于柯西高斯动态消减变异的果蝇优化算法。该算法兼顾了全局探索和局部开发两个特性,丰富了种群的多样性,有效地消除了易陷入局部极值的弊端,提高了算法的收敛速度。仿真实验采用经典函数用例和实际工程用例进行验证,结果表明该算法的求解速度和精度更高,稳定性更好。

关键词: 果蝇优化, 柯西变异, 高斯变异, 动态消减变异, 变异效能系数, 动态消减变异因子

Abstract:

The fruit fly optimization algorithm (FOA) is easy to fall into local extremum and has slow convergence speed. To overcome these problems, combining the advantages of Cauchy mutation and Gaussian mutation, we propose the concepts of mutation effectiveness coefficient and CauchyGaussian dynamic reduction mutation factor and a fruit fly optimization algorithm with CauchyGaussian dynamic reduction mutation (FOACGDRM) as well, which takes into account of both the global exploration character and the local exploitation character, and which is  applied to improve the FOA. The FOACGDRM can enrich population diversity, effectively avoid local extremum and enhance the convergence speed. Simulation experiments on classic function instances and practical engineering instances verify the FOACGDRM, which show that the FOACGDRM is better in precision speed and stability.

Key words: fruit fly optimization;Cauchy mutation;Gaussian mutation;dynamic reduction mutation;mutation effectiveness coefficient;dynamic reduction mutation factor