• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2021, Vol. 43 ›› Issue (05): 944-950.

• 人工智能与数据挖掘 • 上一篇    

基于反向学习和种群引导的多目标蝗虫优化算法

邵鸿南1,梁倩2,王李森1,马云鹏1,项贤鹏1   

  1. (1.东北财经大学统计学院,辽宁 大连 116000;2.哈尔滨商业大学经济学院,黑龙江 哈尔滨 150000)
  • 收稿日期:2020-03-03 修回日期:2020-06-05 接受日期:2021-05-25 出版日期:2021-05-25 发布日期:2021-05-19

A multi-objective grasshopper optimization algorithm based on opposition-based learning and population guidance

SHAO Hong-nan1,LIANG Qian2,WANG Li-sen1,MA Yun-peng1,XIANG Xian-peng1   

  1. (1.School of Statistics,Dongbei University of Finance and Economics,Dalian 116000;

    2.School of Economics,Harbin University of Commerce,Harbin 150000,China)

  • Received:2020-03-03 Revised:2020-06-05 Accepted:2021-05-25 Online:2021-05-25 Published:2021-05-19

摘要: 为了解决多目标优化的相关问题,提出了求解多目标的蝗虫优化算法,结合单个目标的蝗虫优化算法的搜寻机制、帕累托优势以及拥挤度策略,并在算法中应用种群引导和高斯变异算子,加入了反向学习机制。将所提出的算法与经典的MOPSO、MOCS、MOGOA和MOWOA算法进行了比较,比较结果表明,所提出的改进多目标蝗虫优化算法具有良好的鲁棒性,所求得的解分布更均匀,收敛更快速,是一种有着良好应用前景的多目标进化算法。

关键词: 反向学习机制, 蝗虫优化算法, 种群引导, 高斯变异

Abstract: In order to solve the related problems of multi-objective optimization, this paper proposes an improved multi-objective grasshopper optimization algorithm, by combining the search mechanism of the single-target grasshopper optimization algorithm and the Pareto advantage and crowding strategy, applying the population guidance and Gaussian mutation operator in the algorithm, and adding the reverse learning mechanism. In the experimental verification, the proposed algorithm is compared with the classic MOPSO, MOCS, MOGOA, MOWOA algorithms. The experimental results  show that the improved multi-objective grasshopper optimization algorithm has good robustness, more uniform distribution of the solution, and fast convergence. It is a multi-objective evolutionary algorithm with good application prospects.


Key words: opposition-based learning, grasshopper optimization algorithm, population guidance, Gaussian mutation