• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 论文 • 上一篇    下一篇

带空间约束的邻域中值加权FCM图像分割算法

杨军1,柯运生1,王茂正2   

  1. (1.兰州交通大学电子与信息工程学院,甘肃 兰州 730070;2.兰州交通大学自动化与电气工程学院,甘肃 兰州 730070)
  • 收稿日期:2015-10-09 修回日期:2016-03-04 出版日期:2017-05-25 发布日期:2017-05-25
  • 基金资助:

    国家自然科学基金(61462059);中国博士后科学基金(2013M542396);人社部留学人员科技活动项目择优资助(重点类)(2013277);甘肃省高等学校基本科研业务费(214142)

An image segmentation algorithm of neighborhood
median weighted fuzzy C-means with spatial constraints

YANG Jun1,KE Yun-sheng1,WANG Mao-zheng2     

  1. (1.School of Electronic and Information Engineering,Lanzhou Jiaotong University,Lanzhou 730070;
    2.School of Automation and Electrical Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China)
  • Received:2015-10-09 Revised:2016-03-04 Online:2017-05-25 Published:2017-05-25

摘要:

在聚类分析过程中,欧氏距离是最为常用的距离度量方法,而传统的基于欧氏距离的图像分割方法没有综合考虑空间信息和邻域特征等因素。提出了一种用邻域中值加权欧氏距离替代欧氏距离的度量方法,同时植入像素空间约束信息,这样可以利用更多的图像空间信息来改善图像分割质量。通过对多幅图像的分割实验结果表明,与已有的算法相比,本算法不仅能提升图像分割效果,具有更好的噪声抵抗性,同时能加速算法的收敛速度,从而提高了分割效率。

关键词: 聚类, 欧氏距离, 图像分割, 邻域中值加权, 空间约束

Abstract:

Euclidean distance is the most commonly used distance measurement method in the process of clustering analysis.The traditional Euclidean distance image segmentation method does not consider the spatial information, neighborhood characteristics and other factors. In order to use more image space information to improve the quality of image segmentation, in addition to implanting spatial constraints information of pixels, we propose an alternative neighborhood median weighted Euclidean distance to replace the Euclidean distance. The results of segmentation experiments on multiple images show that, compared with the existing algorithms, this algorithm cannot only improve  image segmentation effect with a better noise resistance, but also accelerate the convergence and obtain high efficiency.

Key words: clustering, Euclidean distance, image segmentation, neighborhood median weight, spatial constraints