• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 人工智能与数据挖掘 • 上一篇    下一篇

基于联合神经网络模型的中文医疗实体分类与关系抽取

张玉坤1,2,刘茂福1,2,胡慧君1,2   

  1. (1.武汉科技大学计算机科学与技术学院,湖北 武汉 430065;
    2.智能信息处理与实时工业系统湖北省重点实验室,湖北 武汉 430065)
     
  • 收稿日期:2018-08-28 修回日期:2018-10-19 出版日期:2019-06-25 发布日期:2019-06-25
  • 基金资助:

    国家社会科学基金重大项目(11&ZD189);湖北省教育厅科学技术研究计划(B2016010);湖北省教育厅人文社会科学研究项目(17Y018);武汉市科学技术计划(2016060101010047)

Chinese medical entity classification and relationship
 extraction based on joint neural network model

ZHANG Yukun1,2,LIU Maofu1,2,HU Huijun1,2   

  1. (1.School of Computer Science and Technology,Wuhan University of Science and Technology,Wuhan 430065;
    2.Hubei Province Key Laboratory of Intelligent Information Processing and Realtime Industrial System,Wuhan 430065,China)

     
  • Received:2018-08-28 Revised:2018-10-19 Online:2019-06-25 Published:2019-06-25

摘要:

近年来,医疗健康领域的实体分类与关系抽取引起了广泛关注。以往工作大多采用流水线模型,此类模型容易忽略任务间联系并造成错误传播,而联合学习则能够很好地避免这2个问题。为此,把卷积神经网络与支持向量机、条件随机场相结合,构建了联合神经网络模型。在此模型基础上,以参数共享的方式,分别通过任务联合、模型联合以及特征联合对实体分类与关系抽取2个任务进行联合学习,在药品说明书语料库中取得了非常不错的效果,实体分类和关系抽取的F值分别达到了98.0%和98.3%。实验表明,联合神经网络模型对于实体分类和关系抽取是非常有效的。

关键词: 实体分类, 关系抽取, 参数共享, 联合学习

Abstract:

Entity classification and relationship extraction in healthcare and medical field have attracted wide attention in recent years, and most of the work used the pipeline model in the past, which easily ignored the link between tasks and caused error propagation. Since joint learning can well avoid the two problems, a joint neural network model is established by combining the convolution neural network with support vector machine and conditional random field. On the basis of this model, entity classification and relationship extraction are studied jointly by task combination, model combination and feature combination in the way of parameter sharing. The joint neural network model achieves very good performance in the medicine instructions corpus, and the F-scores of entity classification and relationship extraction reach 98.0% and 98.3%, respectively. Experiments show that the joint neural network model is very effective for entity classification and relationship extraction in the medicine instructions corpus.
 

Key words: entity classification;relationship , extraction;parameter sharing;joint learning