计算机工程与科学 ›› 2021, Vol. 43 ›› Issue (01): 95-104.
吴湘宁,贺鹏,邓中港,李佳琪,王稳,陈苗
WU Xiang-ning,HE Peng,DENG Zhong-gang,LI Jia-qi,WANG Wen,CHEN Miao
摘要: 小目标检测用来识别图像中小像素尺寸目标。传统目标识别算法泛化性差,而通用的深度卷积神经网络算法容易丢失小目标的特征,对小目标识别的效果不甚理想。针对以上问题,提出了一种基于注意力机制的小目标检测深度学习模型AM-R-CNN,该模型在ResNet101主干网络和候选区域生成网络中使用了通道域注意力和空间域注意力,通道域注意力模块实现了通道维度上的特征加权标定,空间域注意力模块实现了空间维度上的特征聚焦,从而提升了小目标的捕获效果。此外,模型使用数据增强技术和多尺度特征融合技术,保证了小目标特征提取的有效性。在遥感影像数据集上的识别船只实验表明,注意力模块可带来小目标检测的性能提升。