• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 人工智能与数据挖掘 • 上一篇    下一篇

基于多源信息聚类和IRC-RBM的混合推荐算法

何登平1,2,3,张为易1,2,黄浩1,2   

  1. (1.重庆邮电大学通信与信息工程学院,重庆 400065;
    2.重庆邮电大学通信新技术应用研究中心,重庆400065;3.重庆信科设计有限公司,重庆 401121)

     
  • 收稿日期:2019-07-28 修回日期:2019-09-25 出版日期:2020-06-25 发布日期:2020-06-25

A hybrid recommendation algorithm based on
 multi-source information clustering and IRC-RBM

HE Deng-ping1,2,3,ZHANG Wei-yi1,2,HUANG Hao1,2   

  1. (1.School of Communication and Information Engineering,
    Chongqing University of Posts and Telecommunications,Chongqing 400065;
    2.Research Center of New Telecommunication Technology Applications,
    Chongqing University of Posts and Telecommunications,Chongqing 400065;
    3.Chongqing Information Technology Designing Co.,Ltd.,Chongqing 401121,China)
  • Received:2019-07-28 Revised:2019-09-25 Online:2020-06-25 Published:2020-06-25

摘要:

针对协同过滤存在的数据稀疏性问题,提出了融合多源信息聚类和IRC-RBM的混合推荐算法。首先以用户信任度和项目时间权重作为聚类依据,利用最小生成树的K-means聚类算法对用户进行聚类分析,生成K个相似用户集合,在聚类分析的基础上进行评分预测;最后通过线性加权的方式,把聚类后评分矩阵和IRC-RBM模型生成的评分矩阵进行加权融合,用Top-N进行推荐。实验结果表明,相比较传统的推荐算法,该混合算法在准确率上有了显著的提升。

关键词: 多源信息, 聚类, 受限玻尔兹曼机, 混合推荐

Abstract:

To solve the problem of data sparsity in collaborative filtering, this paper proposes a hybrid recommendation algorithm combining multi-source information clustering and IRC-RBM. Firstly, this algorithm takes user trust and project time weight as the clustering basis, uses the K-means clustering algorithm of minimum spanning tree to carry out clustering analysis on users, generates K similar user sets, and conducts scoring prediction on the basis of clustering analysis. Finally, the scoring matrix after clustering and the scoring matrix generated by IRC-RBM model are weighted and fused by linear weighting, and Top-N is used for recommendation. Experimental results show that the proposed hybrid recommendation algorithm significantly improves the accuracy in comparison to the traditional recommendation algorithm.
 

 

Key words: multi-source information, clustering, restricted Boltzmann machine, hybrid recommendation