• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2020, Vol. 42 ›› Issue (08): 1506-1513.

• 人工智能与数据挖掘 • 上一篇    下一篇

融合结构与属性视图的可重叠社区发现算法

昌阳1,马慧芳1,2   

  1. (1.西北师范大学计算机科学与工程学院,甘肃 兰州 730070;

    2.广西师范大学广西多源信息挖掘与安全重点实验室,广西 桂林 541004)


  • 收稿日期:2019-11-11 修回日期:2020-02-23 接受日期:2020-08-25 出版日期:2020-08-25 发布日期:2020-08-29
  • 基金资助:
    国家自然科学基金(61762078,61363058);广西多源信息挖掘与安全重点实验室开放基金(MIMS18-08);西北师范大学2019年度青年教师科研能力提升计划重大项目(NWNU-LKQN2019-2);甘肃省高等学校创新基金(2020B-089)

An overlapping community detection method combining structure and attribute view

CHANG Yang1,MA Hui-fang1,2#br#

#br#
  

  1. (1.College of Computer Science and Engineering,Northwest Normal University,Lanzhou 730070;

    2.Guangxi Key Laboratory of Multi-source Information Mining and Security,Guangxi Normal University,Guilin 541004,China)
  • Received:2019-11-11 Revised:2020-02-23 Accepted:2020-08-25 Online:2020-08-25 Published:2020-08-29

摘要: 社区发现算法是发现社区内部结构和组织原则的基本工具。现有的基于模型的算法和基于优化的算法通常考虑2种信息源,即网络结构和节点属性,以获得具有更密集的网络结构和相似属性信息的社区。然而此类算法在聚类过程中无法自动确定结构与属性之间的相对重要性,以揭示子空间,因此检测到的社区质量还需提升。将子空间集成到一个重叠社区发现框架中,设计了自适应结构和属性权重策略,有效地揭示子空间,从而发现多样性的社区。在人工和真实网络上进行了广泛的实验,进一步分析验证了揭示子空间对于捕获更好的社区的重要性,说明了本文算法的合理性和有效性。


关键词: 视图, 可重叠, 子空间, 聚类, 社区发现

Abstract: Community detection algorithms are the basic tools for discovering the internal structure and organizational principles of a community. Existing model-based and optimization-based algorithms usually consider two sources of information: network structure and node attributes, to obtain communities with both denser network structure and similar attribute information. However, such algorithms cannot automatically determine the relative importance between them and reveal subspaces, so the quality of the detected communities needs to be improved. This paper integrates subspaces into a new overlapping community detection framework, and designs an adaptive structure and attribute weighting strategy, which effectively reveals the subspace to discover diverse communities. Extensive experiments are conducted on artificial and real networks. The experimental results reveal the importance of subspaces on capturing better communities, justifying the rationality and effectiveness of the proposed algorithm.


Key words: view, overlapping, subspace, clustering, community detection