计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (11): 2027-2036.
权威铭,刘天一,张雷
QUAN Wei-ming,LIU Tian-yi,ZHANG Lei
摘要: 目前,深度学习已经在各种人体运动识别(HAR)任务中发挥了重要作用。但是,由于运动数据具有时间序列和包含肢体动作的特殊性,现有神经网络在进行卷积操作时会导致数据高度相关,并且随着网络影响到下一层,这限制了模型的识别效果。为此,提出了一种带有协方差矩阵的改进卷积神经网络用于HAR场景,通过矩阵变换搭建一种去相关的网络结构来消除相关性问题,可以在网络表现不佳时替代现有的批量归一化(BN)层用于归一化数据。在4个HAR公共数据集上进行实验,并与传统CNN和带有BN层的模型进行比较。实验结果表明,对比此前的深度学习网络,改进的神经网络有1%~2%的性能提升,验证了该方法的有效性,并将程序移植到了移动端进行实时运动识别。