• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (06): 1071-1078.

• 图形与图像 • 上一篇    下一篇

基于坐标卷积和最优传输分配的交通标志检测模型

熊昌镇,李熙宇,王庞伟   

  1. (北方工业大学电气与控制工程学院,北京 100144)
  • 收稿日期:2023-11-10 修回日期:2024-05-21 出版日期:2025-06-25 发布日期:2025-06-26
  • 基金资助:
    北京市自然科学基金(4212034)

A traffic sign detection model based on coordinate convolution and optimal transport assignment

XIONG Changzhen,LI Xiyu,WANG Pangwei   

  1. (School of Electrical and Control Engineering,North China University of Technology,Beijing 100144,China)
  • Received:2023-11-10 Revised:2024-05-21 Online:2025-06-25 Published:2025-06-26

摘要: 针对因尺度小、高速移动和天气等因素导致交通标志检测失败的问题,提出了一种基于坐标卷积和最优传输标签分配的交通标志检测模型。为兼顾嵌入式平台部署和检测速度,以YOLOv5s检测模型为基础。首先,使用具有额外坐标通道的坐标卷积来感知空间信息,增强小尺度交通标志的特征表征能力。其次,通过最优传输分配方法寻找全局最优的目标标签分配方法,减少模糊框的个数,提高训练数据的利用率。最后,使用包含角度损失的SIoU损失函数,提升预测框的收敛速度并增强检测能力。在CCTSDB和TSRD 2个交通标志数据集上测试本文模型的表现,实验结果表明,本文模型的表现较原YOLOv5s模型有较大的提升。与YOLOv7模型相比,本文模型的mAP_0.5和mAP_0.5:0.95在TSRD数据集上分别提升了2.35%和1.45%,在CCTSDB数据集上与YOLOv7的持平,同时本文模型在2个数据集上的检测速度是YOLOv7的2.5倍多,因此本文模型具有更出色的检测精度和速度。

关键词: 交通标志, 坐标卷积, 目标检测, 最优传输分配

Abstract: To address the issue of failed traffic sign detection caused by factors such as small scale, high-speed movement, and adverse weather conditions, a traffic sign detection model based on coordinate convolution and optimal transport label assignment is proposed. In order to take into account the embedded platform deployment and detection speed, the proposed model builds upon the YOLOv5s detection model. Firstly, spatial information is perceived and the feature representation capability for small-scale traffic signs is enhanced by utilizing coordinate convolution with additional coordinate channels. Secondly, an optimal transport assignment method is employed to seek globally optimal object  label assignments, reducing the number of ambiguous bounding boxes and improving the utilization of training data. Finally, a SIoU loss function incorporating angle loss is utilized to enhance the con- vergence speed and detection capability of predicted bounding boxes. Experimental evaluations of the proposed model on CCTSDB and TSRD traffic sign datasets demonstrate significant improvements over the original YOLOv5s model. Compared with the YOLOv7 model, the proposed model achieves a 2.35% increase in mAP_0.5 and a 1.45% increase in mAP_0.5:0.95 on TSRD dataset, while performing on par with YOLOv7 on the CCTSDB dataset. Moreover, the proposed model exhibits more than 2.5 times faster detection speed than YOLOv7 on both datasets, highlighting its excellent detection accuracy and speed.

Key words: traffic sign, coordinate convolution, object detection, optimal transport assignment