摘要:
自人工蜂群算法(ABC)提出以来,因其算法简单、控制参数少、全局收敛能力强、便于实现等优点得到了广泛的关注。然而,ABC算法仍然存在收敛精度低、收敛速度慢等不足之处。针对此问题,受到生物个体邻域规则的启发,提出一种基于生物邻域最优个体的人工蜂群算法(NABC),通过食物源向邻域最优食物源周围搜索,提高了种群的搜索速度;同时,为了动态调节算法的搜索过程,使算法早期侧重于全局搜索,后期侧重于深度搜索,提出了基于三角函数调节因子的邻域搜索人工蜂群算法(DNABC)。对12个测试函数的实验结果表明,NABC算法在函数优化时具有较高的收敛精度和较快的收敛速度,而且基于三角函数的调节因子能够对NABC算法的搜索过程进行调节,促进了NABC算法的改善。
常小刚1,赵红星2. 动态调节因子的邻域搜索人工蜂群算法[J]. 计算机工程与科学.
CHANG Xiaogang1,ZHAO Hongxing2.
A neighborhood search artificial bee colony algorithm
improved by dynamic adjustment factors
[J]. Computer Engineering & Science.