• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 人工智能与数据挖掘 • 上一篇    下一篇

动态调节因子的邻域搜索人工蜂群算法

常小刚1,赵红星2   

  1. (1.兰州交通大学网络信息中心,甘肃 兰州 730070;2.兰州交通大学交通运输学院,甘肃 兰州 730070)
  • 收稿日期:2018-03-16 修回日期:2018-09-06 出版日期:2019-04-25 发布日期:2019-04-25
  • 基金资助:

    国家自然科学基金(61364026);兰州交通大学青年科学基金(2014027)

A neighborhood search artificial bee colony algorithm
 improved by dynamic adjustment factors

CHANG Xiaogang1,ZHAO Hongxing2   

  1. (1.Network & Information Center,Lanzhou Jiaotong University,Lanzhou 730070;
    2.School of Traffic and Transportation,Lanzhou Jiaotong University,Lanzhou 730070,China)
  • Received:2018-03-16 Revised:2018-09-06 Online:2019-04-25 Published:2019-04-25

摘要:

自人工蜂群算法(ABC)提出以来,因其算法简单、控制参数少、全局收敛能力强、便于实现等优点得到了广泛的关注。然而,ABC算法仍然存在收敛精度低、收敛速度慢等不足之处。针对此问题,受到生物个体邻域规则的启发,提出一种基于生物邻域最优个体的人工蜂群算法(NABC),通过食物源向邻域最优食物源周围搜索,提高了种群的搜索速度;同时,为了动态调节算法的搜索过程,使算法早期侧重于全局搜索,后期侧重于深度搜索,提出了基于三角函数调节因子的邻域搜索人工蜂群算法(DNABC)。对12个测试函数的实验结果表明,NABC算法在函数优化时具有较高的收敛精度和较快的收敛速度,而且基于三角函数的调节因子能够对NABC算法的搜索过程进行调节,促进了NABC算法的改善。
 

关键词: 人工蜂群算法, 动态调节因子, 邻域最优个体, 收敛精度, 收敛速度, 函数优化

Abstract:

The artificial bee colony (ABC) algorithm attracts wide attention because of its simple process, a small number of control parameters, strong global convergence ability and easy implementation. However, it has several disadvantages, such as low convergence precision and slow convergence speed. Inspired by the rules of the optimal biological individual in a neighborhood, we propose a neighborhood search artificial colony (NABC) algorithm to address these issues. It improves the searching speed of the population by searching the food source around the best food source in the neighborhood. Moreover, to dynamically adjust the search process of the algorithm, we also propose a dynamical neighborhood search ABC (DNABC) algorithm based on trigonometric function regulatory factors. It can make the algorithm focus on a global search in the early stage and on depth search in the late stage of exploration. Results from the experiments on 12 benchmark functions show that the NABC algorithm has high convergence precision and fast convergence speed during function optimization. And the NABC algorithm can be improved by the adjustment factors of the trigonometric function.

Key words: artificial bee colony algorithm, dynamic adjustment factor, neighborhood optimal individual, convergence accuracy, convergence speed, function optimization