• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2021, Vol. 43 ›› Issue (07): 1291-1298.

• 人工智能与数据挖掘 • 上一篇    下一篇

基于SSD和时序模型的微博好友推荐算法

马汉达,景迪   

  1. (江苏大学计算机科学与通信工程学院,江苏 镇江 212013)
  • 收稿日期:2020-04-27 修回日期:2020-07-06 接受日期:2021-07-25 出版日期:2021-07-25 发布日期:2021-08-17

A microblog friend recommendation algorithm based on SSD and timing model

MA Han-da,JING Di   

  1. (School of Computer Science and Communication Engineering,Jiangsu University,Zhenjiang 212013,China)
  • Received:2020-04-27 Revised:2020-07-06 Accepted:2021-07-25 Online:2021-07-25 Published:2021-08-17

摘要: 社交网络用户的指数型增长,导致用户在网络中难以找到适合自己的好友。提出一种基于多目标检测算法SSD和时序模型的微博好友推荐算法BSBT-FR,首先利用SSD对搜集到的用户图像进行信息提取,再利用时序模型在时间维度上对提取到的信息做进一步处理,然后利用JS散度公式计算用户间的相似度,最后与基于用户个人信息得出的相似度进行加权式融合,得出综合的用户相似度,使用Top-K思想进行用户推荐。在新浪微博用户数据集上的实验表明,参考因素的权重取值会影响推荐结果,BSBT-FR算法与只考虑用户属性或用户图像的算法相比,精准度更高。


关键词: 社交网络, 目标检测, 好友推荐, 时序模型

Abstract: The exponential growth of social network users makes it difficult for users to find suitable friends in the network. Therefore, this paper proposes a microblog friend recommendation algorithm based on SSD and timing model. Firstly, the multi-target detection algorithm SSD is used to extract the information of the collected users’ images. Secondly, the timing model is used to further process the extracted information in time dimension. Then, JS divergence formula is used to calculate the similarity between users. Finally, the weighted fusion is carried out with the similarity based on the user’s personal information to obtain the comprehensive user similarity, and the Top-K idea is used for user re- commendation. The verification on Sina microblog users’ data set shows that the weight value of refe- rence factors will affect the recommendation results and the precision of this method is higher than that of the algorithm only considering users’ attributes or users’ pictures.


Key words: social network, target detection, friend recommendation, timing model