• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2023, Vol. 45 ›› Issue (10): 1866-1873.

• 人工智能与数据挖掘 • 上一篇    下一篇

基于双注意力融合知识的方面级情感分类

张千锟,韩虎,郝俊   

  1. (兰州交通大学电子与信息工程学院,甘肃 兰州 730070)
  • 收稿日期:2022-01-04 修回日期:2022-04-26 接受日期:2023-10-25 出版日期:2023-10-25 发布日期:2023-10-17
  • 基金资助:
    国家自然科学基金(62166024)

Aspect-level sentiment classification based on dual attention fusion knowledge

ZHANG Qian-kun,HAN Hu,HAO Jun   

  1. (School of Electronic & Information Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China)
  • Received:2022-01-04 Revised:2022-04-26 Accepted:2023-10-25 Online:2023-10-25 Published:2023-10-17

摘要: 方面级情感分类研究是针对语句的特定方面判别其表达的情感极性。现有解决方案中,虽然基于注意力机制的循环神经网络模型表现较好,但是由于评论文本较短,且包含较多的新词和多义词,上述方法在处理此类“语义模糊”句子时性能不够理想。因此,提出一种基于知识图谱和注意力机制的神经网络模型,基本思想是利用知识库获取方面词的相关概念集,融合外部信息来增强文本的语义表示。首先,将双向长短时记忆网络的输出与自注意力机制相结合,生成上下文表示。然后,联合上下文表示利用双注意力从知识图谱中获取外部知识,得到和方面词相关的知识向量。最后,将2部分内容一起输入到全连接网络计算方面级情感倾向。实验结果表明,该模型与其他模型相比分类性能显著提升。

关键词: 方面级情感分类, 知识图谱, 注意力机制

Abstract: Aspect-level sentiment classification aims to discriminate the sentiment polarity of a specific aspect in a sentence. Although attention-based recurrent neural network models perform well among existing solutions, they are not ideal for processing "semantically ambiguous" sentences that are short and contain many neologisms and polysemous words. Therefore, this paper proposes a neural network model based on knowledge graph and attention mechanism. The basic idea is to use a knowledge base to obtain a relevant concept set of aspect words and integrate external information to enhance the semantic representation of the text. Firstly, the output of bidirectional long short-term memory network is combined with self-attention mechanism to generate context representation. Then, the upper and lower context representations are combined to use dual attention to obtain external knowledge from the knowledge graph and obtain knowledge vectors related to aspect words. Finally, the two parts of content are input together into a fully connected network to calculate the aspect-level sentiment tendency. Experimental results show that compared with other models, the proposed model significantly improves classification performance.

Key words: aspect-level sentiment classification;knowledge graph;attention mechanism ,