• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2023, Vol. 45 ›› Issue (10): 1884-1890.

• 人工智能与数据挖掘 • 上一篇    下一篇

基于概率两阶段CenterNet2的林火图像预警检测方法

李宝民,王小鹏,孙茜容,张军平   

  1. (兰州交通大学电子与信息工程学院,甘肃 兰州 730070)
  • 收稿日期:2022-10-21 修回日期:2023-03-27 接受日期:2023-10-25 出版日期:2023-10-25 发布日期:2023-10-17
  • 基金资助:
    国家自然科学基金(61761027);甘肃省高校产业支撑计划(2023CYZC-40);甘肃省优秀研究生“创新之星”项目(2022CXZX-547)

A forest fire image early warning detection method based on probabilistic two-stage CenterNet2

LI Bao-min,WANG Xiao-peng,SUN Qian-rong,ZHANG Jun-ping   

  1. (School of Electronic and Information Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China)
  • Received:2022-10-21 Revised:2023-03-27 Accepted:2023-10-25 Online:2023-10-25 Published:2023-10-17

摘要: 森林火灾的及时预警对于森林保护有着至关重要的作用,由于林中烟火背景复杂、干扰因素较多,检测精度和效率均会受到影响。为此提出了一种基于CenterNet2的林火图像检测方法,采用轻量级主干网络VoVNetV2结合非对称卷积核来提高特征提取能力和检测速度,同时在加权双向特征金字塔网络中引入注意力机制eSE进行特征融合,提高小目标检测精度,最后采用SIoU损失函数提升目标框回归效果。仿真实验结果表明,该方法能够较准确地进行实时林火检测,且漏报率低。

关键词: 森林火灾, 非对称卷积核, 注意力机制, SIoU损失函数

Abstract: Timely warning of forest fire plays a crucial role in forest protection. Due to the complex background of forest fireworks and many interference factors, the detection accuracy and efficiency are affected. Therefore, a forest fire image detection method based on CenterNet2 is proposed. The lightweight backbone network VoVNetV2 combined with asymmetric convolution kernel is used to improve the feature extraction ability and detection speed. Meanwhile, an attention mechanism eSE (Effective Squeeze and Extraction) is introduced into the weighted bidirectional feature pyramid network for feature fusion, so as to improve the accuracy of small target detection. Then, SIoU loss function is used to improve the effect of target box regression. The simulation results show that the method can accurately detect forest fire in real time, and the false rate is low. 


Key words: forest fires, asymmetric convolution kernel, attention mechanism, SIoU loss function