• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2024, Vol. 46 ›› Issue (01): 132-141.

• 人工智能与数据挖掘 • 上一篇    下一篇

局部判别损失无监督域适应方法

王姗姗1,汪梦竹2,骆志刚2   

  1. (1.安徽大学计算智能与信号处理教育部重点实验室,安徽 合肥 230039;
    2.国防科技大学计算机学院并行与分布计算重点实验室,湖南 长沙 410073)
  • 收稿日期:2022-10-13 修回日期:2022-11-28 接受日期:2024-01-25 出版日期:2024-01-25 发布日期:2024-01-15
  • 基金资助:
    国家自然科学基金(62106003)

A focally discriminative loss for unsupervised domain adaptation method

WANG Shan-shan1,WANG Meng-zhu2,LUO Zhi-gang2   

  1. (1.The Key Laboratory of Intelligent Computing and Signal Processing,Ministry of Education,Anhui University,Hefei 230039;
    2.Laboratory of Parallel and Distributed Computing,College of Computer Science and Technology,
    National University of Defense Technology,Changsha 410073,China)
  • Received:2022-10-13 Revised:2022-11-28 Accepted:2024-01-25 Online:2024-01-25 Published:2024-01-15

摘要: 在无监督域适应任务中,源域和目标域的分布不同,源域数据标签已知,但是目标域的数据标签未知。最大平均差异MMD是一种具有代表性的分布度量方法,广泛应用于源域与目标域之间的分布差异度量。然而,MMD度量及其变种方法通常忽略了样本的类内紧凑性和类间可分离性,降低了特征表达的可判别性。因此,提出局部判别损失无监督域适应方法,从2个方面提升域适应方法的判别能力:(1) 重新设计MMD度量方法的权重,解决类别不均衡问题,使难对齐类别在域间分布上保持一致;(2) 探索局部对比损失,平衡正样本对和负样本对之间的关系,从而学习到更好的判别性特征。结合域间损失和类间损失,可使同一类样本靠近,不同类样本之间远离。该方法简单有效,即插即用,可扩展至注意力机制的网络结构上。在多个域适应数据集上,该方法的有效性均得到了验证。

关键词: 无监督域适应, 基于类的最大平均差异, 局部对比损失, 注意力机制

Abstract: The maximum mean discrepancy (MMD), as a representative distribution metric between source domain and target domain, has been widely applied in unsupervised domain adaptation (UDA), where both domains follow different distributions, and the labels from source domain are merely available. However, MMD and its class-wise variants possibly ignore the intra-class compactness and inter-class separability, thus reducing discriminability of feature representation. This paper proposes a focally discriminative loss for unsupervised domain adaptation. This method endeavors to improve the discriminative ability of MMD from two aspects: (1) the weights are re-designed for MMD in order to align the distribution of relatively hard classes across domains; (2) a focally contrastive loss is explored to tradeoff the positive sample pairs and negative ones for better discrimination. The integration of both losses can not only make the intra-class features close, but also push away the inter-class features far from each other. Moreover, the improved loss is simple yet effective, and it can be extended to the network structure of the attention mechanism. Experiments on several domain adaptation datasets verify the effectiveness of the proposed method.

Key words: unsupervised domain adaptation, weighted maximum mean discrepancy, focally contrastive loss, attention mechanism