• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2010, Vol. 32 ›› Issue (7): 112-116.doi: 10.3969/j.issn.1007130X.2010.

• 论文 • 上一篇    下一篇

一种新的基于模糊C均值算法的模糊时间序列确定性预测模型

余文利1,方建文2,廖建平1   

  1. (1.衢州学院信息与电力工程系,浙江 衢州 324000;2.浙江大学计算机科学与技术学院,浙江 杭州 310027)
  • 收稿日期:2008-12-01 修回日期:2009-03-03 出版日期:2010-06-25 发布日期:2010-06-25
  • 通讯作者: 余文利 E-mail:yujimmy@163.com
  • 作者简介:余文利(1968),男,浙江龙游人,讲师,研究方向为数据挖掘;方建文,博士生,副教授,研究方向为数据挖掘;廖建平,讲师,研究方向为数据挖掘。

A Novel FCMBased Deterministic Forecasting Model for Fuzzy Time Series

YU Wenli1,FANG Jianwen2,LIAO Jianpin1   

  1. (1.Department of Information and Electric Power Engineering,Quzhou College,Quzhou 324000;
    2.School of Computer Science and  Technology,Zhejiang University,Hanzhou 310027,China)
  • Received:2008-12-01 Revised:2009-03-03 Online:2010-06-25 Published:2010-06-25
  • Contact: YU Wenli E-mail:yujimmy@163.com

摘要:

模拟时间序列因为在处理数据采集中固有的不确定性和含糊性方面的显著能力而得到了越来越多的的关注,已经有许多模型致力于改进预测准确性和减少预测的计算开销,然而对于预测不确定性的控制、有效的分区间隔和对于不同的分区间隔达到一致的预测准确性方面研究较少。针对现有预测模型的不足,本文提出了一种新的预测模型,新模型增强了预测的性能并允许处理两因子预测问题。在新模型中,应用模糊均值算法来处理模糊时间序列的区间划分,划分时考虑了数据点的性质,产生不等大小的区间。最后在仿真实验中采用真实的观察数据,仿真实验结果表明本文提出的预测模型在预测准确性方面要优于现有的其他预测模型。

关键词: 模糊时间序列, 预测, 区间划分, 模糊逻辑关系

Abstract:

The study of fuzzy time series has increasingly attracted much attention due to its salient capabilities of tackling uncertainty and vagueness in data sampling.There have been a variety of models developed to either improve forecasting accuracy or reduce computation overhead. However,the issues of controlling uncertainty in forecasting,effectively partitioning intervals,and consistently achieving forecasting accrucy with different interval lengths have been rarely investigated.In this paper,a novel forecasting model is proposed,because of the disadvantages of other existing forecasting models.A novel forecasting model enhances forecasting functionality and allows the  processing of twofactor forecasting problems.In addition,this model applies fuzzy Cmeans(FCM) clustering to deal with interval partitioning,which takes the nature of data points into account and produces unequalsized intervals.The superior accuracy of the proposed model is demonstrated by experiments by comparing it to other existing models using realworld empirical data.

Key words: fuzzy time series;forecasting;interval partitioning;fuzzy logical relationship