J4 ›› 2016, Vol. 38 ›› Issue (02): 370-375.
王卫平,周忠眉,郑艺峰
WANG Weiping,ZHOU Zhongmei,ZHENG Yifeng
摘要:
:关联分类是一项重要的分类技术,目前普遍采用基于支持度和置信度的关联分类模式。但是,用支持度度量项集的分类能力过于简单,且置信度不能度量项集与类的相关性,所以利用支持度和置信度容易产生质量不好的规则。提出改进的关联分类算法—ACSER。ACSER不仅考虑项集到本类的支持度,也考虑项集到补类的支持度。首先,提取频繁增比模式作为分类候选规则集;其次,利用置信度和增比率度量规则的强度,按照其强度进行排序和剪枝;最后,选择k条最优的规则进行预测。在16个UCI数据集上的实验结果表明,改进的分类算法ACSER与传统的分类算法相比有更高的分类准确率。