• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2015, Vol. 37 ›› Issue (07): 1245-1251.

• 论文 • 上一篇    下一篇

基于云模型的用户双重聚类推荐算法

陈平华,陈传瑜   

  1. (广东工业大学计算机学院,广东 广州 510006)
  • 收稿日期:2014-05-07 修回日期:2014-07-11 出版日期:2015-07-25 发布日期:2015-07-25
  • 基金资助:

    广东省教育部产学研结合项目(2012B091100003,2012B091000058);广东省专业镇中小微企业服务平台建设项目(2012B040500034)

A user dual clustering recommendation
algorithm  based on cloud model  

CHEN Pinghua,CHEN Chuanyu   

  1. (Faculty of Computer,Guangdong University of Technology,Guangzhou 510006,China)
  • Received:2014-05-07 Revised:2014-07-11 Online:2015-07-25 Published:2015-07-25

摘要:

协同过滤是一种应用广泛的推荐算法,但存在着效率低和数据稀疏等问题。为解决这些问题,提出了一种改进的聚类推荐算法。该算法引用云模型,先从项目属性和用户属性两方面计算云模型期望、熵和超熵,并考虑到评分时间、评分高低和评分习惯等因素的影响,建立用户兴趣模型;接着,采用基于云模型的修正相似度量方法进行用户兴趣相似度比较,并使用Kmeans算法进行聚类;最后,利用参与预测人数的比例对公共项目进行推荐结果合并。在MovieLens上的实验结果表明,该算法不仅可以解决效率低和数据稀疏等问题,还提高了推荐的准确性。

关键词: 协同过滤, 云模型, 聚类, 数据稀疏

Abstract:

Collaborative filtering is a widely used recommendation algorithm, but problems such as low efficiency and data sparseness still exist. In order to solve these problems, we present an improved clustering recommendation algorithm. The algorithm introduces a cloud model, in which the expectation, entropy and hyper entropy are calculated according to the item attributes and user attributes dimensions. To build up a user interest model, the influence of rating time, rating level and rating habits are also taken into account. Then the similarities of user interests are compared by the corrected similarity measurement based on cloud model, and the Kmeans algorithm is adopted to perform clustering. Finally, the recommendation results of the public projects are merged by using the proportion of the participants who will make predictions. Experiment results on the MovieLens show that the algorithm can not only solve the problem of low efficiency and data sparseness but also improve the accuracy of the recommendation results.

Key words: collaborative filtering;cloud model;clustering;data sparseness