• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (11): 2067-2081.

• 人工智能与数据挖掘 • 上一篇    下一篇

基于PCA-PSO_KFCM聚类和BiLSTM-Attention的短期电力负荷预测

邓明亮,张钊,周红艳,陈雪波   

  1. (1.辽宁科技大学计算机与软件工程学院,辽宁 鞍山 114051;2.辽宁科技大学电子与信息工程学院,辽宁 鞍山 114051)

  • 收稿日期:2024-03-10 修回日期:2024-06-18 出版日期:2025-11-25 发布日期:2025-12-08
  • 基金资助:
    国家自然科学基金(71771112);流程工业综合自动化国家重点实验室开放课题(PAL-N201801);辽宁科技大学研究生科技创新项目(LKDYC202310)


Short-term power load forecasting based on PCA-PSO_KFCM clustering and BiLSTM-Attention

DENG Mingliang,ZHANG Zhao,ZHOU Hongyan,CHEN Xuebo   

  1. (1.School of Computer Science and Software Engineering,University of Science and Technology Liaoning,Anshan 114051;
    2.School of Electronic and Information Engineering,University of Science and Technology Liaoning,Anshan 114051,China)
  • Received:2024-03-10 Revised:2024-06-18 Online:2025-11-25 Published:2025-12-08

摘要: 准确可靠的短期电力负荷预测能优化电力调度、提高电力资源利用率,并为电力部门的生产实际提供有价值的参考。随着用电终端的多样化以及气象和日期等短期因素的影响,负荷序列呈现明显的不确定性和随机性。为此,提出基于改进核模糊C均值聚类和双向长短时记忆注意力的新型两阶段短期电力负荷预测方法。第1阶段,采用基于主成分分析和粒子群优化共同改进的KFCM聚类,将具有相似用电特征的负荷数据点归为一类,使得模型训练更有针对性。第2阶段,通过皮尔逊相关系数选取关联度高的气象和时间特征作为输入。同时,为提高预测性能,在BiLSTM模型中引入时间注意力机制和多头自注意力机制。最后,将所提出的方法应用于中国重庆电力公司所提供的真实电力负荷数据集。实验结果表明,与多种不同的预测方法相比,所提方法的预测精度有显著提升。


关键词: 负荷预测, 模糊聚类, 注意力机制, 神经网络, 特征筛选

Abstract: Accurate and reliable short-term power load forecasting can optimize power dispatching, improve the utilization of power resources, and provide valuable references for the actual production of the power sector. With the diversification of power-using terminals and the influence of short-term factors such as weather and date, the load sequence shows obvious uncertainty and randomness. To address this, a novel two-stage short-term power load forecasting method based on improved kernel fuzzy C-mean clustering and bidirectional long- and short-term memory attention is proposed. In the first stage, the KFCM clustering method based on the joint improvement of principal component analysis and particle swarm optimization is used to group the load data points with similar electricity consumption characteristics into one class, which makes the model training more targeted. In the second stage, mete- orological and temporal features with high correlation are selected as inputs through the Pearson correlation coefficient. Meanwhile, to improve the prediction performance of the model, a temporal attention mechanism and a multi-head self-attention mechanism are introduced into the BiLSTM model. Finally, the proposed method is applied to the real power load dataset provided by Chongqing Electric Power Company in China. The experimental results show that the prediction accuracy is significantly improved compared with many different prediction methods.


Key words: load forecasting, fuzzy clustering, attention mechanism, neural network, feature screening