高效能是处理器设计的重要指标。由于指令部件在处理器芯片中开始占据越来越多的芯片面积,消耗了较多的芯片功耗,研究人员提出了零级指令缓存设计。零级指令缓存容量小、访问耗能低,与流水线紧密耦合、取指命中时可以门控流水线部分逻辑。因此,零级指令缓存可以有效提高流水线指令部件的能效比。综述了现有的零级指令缓存的不同结构、各结构的发展与应用情况;展望了零级指令缓存设计的未来研究思路。
硅通孔TSV发生开路故障和泄漏故障会降低三维集成电路的可靠性和良率,因此对绑定前的TSV测试尤为重要。现有CAF-WAS测试方法对泄漏故障的测试优于其他方法(环形振荡器等),缺点是该方法不能测试开路故障。伪泄漏路径思想的提出,解决了现有CAF-WAS方法不能对开路故障进行测试的问题。另外,重新设计了等待时间产生电路,降低了测试时间开销。HSPICE仿真结果显示,该方法能准确预测开路和泄漏故障的范围,测试时间开销仅为现有同类方法的25%。
社交网络作为一种交往方式,已经深入人心。其用户数据在这个大数据时代蕴藏着大量的价值。随着Twitter API的开放,社交网络Twitter俨然成为一个深受欢迎的研究对象,而用户影响力更是其中的研究热点。PageRank算法计算用户影响力已经由来已久,但是它太依赖于用户之间的关注关系,排名不具备时效性。引入用户活跃度的改进PageRank算法,具备一定的时效性,但是不具有足够的说服力和准确性。研究了一种新的基于时间分布用户活跃度的ABP算法,并为不同时段的活跃度加以相应的时效权重因子。最后,以Twitter为研究对象,结合社交关系网,通过实例分析说明ABP算法更具时效性和说服力,可以比较准确地提高活跃用户的排名,降低非活跃用户排名。
为提高无线传感器网络安全评估准确性、灵敏性,将安全态势感知的概念引入无线传感器网络安全研究,采用集对分析理论对无线传感器网络安全态势进行评估,用安全态势值判断无线传感器网络受到安全威胁的强弱。实验中使用KDD Cup 1999数据集模拟无线传感器网络攻击,通过改变网络中受攻击节点数量模拟不同强度的网络攻击,并在11种不同的攻击强度下分析安全态势值变化情况。实验结果表明,该模型可以提高无线传感器网络安全评估的准确性,与传统基于安全熵法的评估模型相比,本文提出的方法对中低强度的攻击灵敏度更高,攻击效果区分更加明显,并可根据安全态势值对网络安全态势进行分级。
现有的2D图像质量评价方法并不能很好地应用于立体图像质量评价中。为了有效评价不同失真立体图像的质量,提出了一种基于视差图和复数轮廓波变换的无参考图像质量评价方法。首先提取了能够反映3D信息的视差图,然后对左右失真图像和视差图进行复数轮廓波变换,计算能量和能量差特征,最后通过支持向量回归SVR模型训练学习,预测图像质量分数。实验结果表明,此方法优于当前文献报道的立体图像质量评价方法。
针对高维输入数据维数较大时可能存在奇异值问题,同时为提高算法的运算效率以及算法的鲁棒性,提出了一种基于L1范数的分块二维局部保持投影算法B2DLPP-L1。传统的局部保持投影算法为避免出现奇异值问题,首先运用主成分分析算法将高维数据投影到子空间中,然而这种方式将会造成高维数据中部分有效信息的流失,B2DLPP-L1算法选择将二维数据直接作为输入数据,避免运用向量形式的输入数据时可能造成的数据流失;同时该算法对二维输入数据进行分块处理,将分块后的数据块作为新的输入数据,之后运用基于L1范数的二维局部保持投影算法对其进行降维。理论上,B2DLPP-L1算法能够较好地对数据进行降维,不仅能够保持高维数据中的有效信息,降低计算复杂程度,提高算法的运行效率,同时还能够克服存在外点情况下分类准确率较低问题,提高算法的鲁棒性。通过选择不同的人脸数据库进行实验,实验结果表明,在存在外点的情况下,运用最近邻分类器时能够取得更高的分类准确率,同时所需的分类时间有所减少。
人脸识别是生物特征识别的重要组成部分,而人眼是人脸最突出的特征之一,眼睛定位成为人脸识别的关键环节。积分投影法是一种常用的人眼定位方法,但直接采用此方法进行人眼定位时,由于眉毛与眼睛距离较近,容易将眉毛的水平位置错误地判定为眼睛的水平位置,降低眼睛定位的准确率。所以,在人脸区域粗定位后,计算眼睛区域的水平积分投影时,增加了其在水平方向灰度变化频繁的特征,即差分投影法,最后将积分投影法与差分投影法相结合来实现人眼定位。该方法在ORL人脸库上经过测试,取得了约90.5%的定位准确率。实验结果表明,该方法可以更准确地定位人眼。
预测子空间聚类PSC算法由于建立在PCA模型下,无法鲁棒地进行主元分析,导致在面对带有强噪声的数据时,聚类性能受到严重影响。为了提高PSC算法对噪声的鲁棒性,利用近年来受到广泛关注的RPCA分解技术得到数据的低秩结构,鲁棒地提取子空间,具体地,通过将RPCA模型融入PSC算法,提出了一种基于RPCA的预测子空间聚类算法。该算法在RPCA模型下检测强影响点,不但可以有效地进行变量选择和模型选择,而且更重要的是改善了PSC算法在噪声环境下的聚类性能。在真实基因表达数据集上的实验结果表明,改进后的算法较之经典的PSC算法无论在无噪声或加噪声环境下都表现出一定聚类优势及良好的鲁棒性。
准确地对通信用户规模进行预测对于通信运营商的决策具有十分重要的意义,而现有的常规预测方法存在预测误差较大、预测速率低等问题。研究一种基于RBF神经网络的通信用户规模预测模型。为了使得RBF神经网络算法预测性能更优,使用梯度下降算法与遗传算法混合对RBF神经网络进行参数优化,提高预测模型收敛效率。实例分析表明,使用本文研究的混合RBF神经网络预测模型的预测结果明显优于其他传统的预测模型。同时,在预测速度上也具有较大的优势。
为了更好地评估Web文档数据质量,提出一种基于PAC-Bayes理论的Web文档质量评估指标体系和评估方法。PAC-Bayes理论融合了PAC理论和贝叶斯定理,在充分利用样本先验信息的基础上,推导出了最紧的泛化风险边界,用于衡量学习算法的泛化性能。首先阐述了文档数据质量评估的研究现状,介绍了PAC-Bayes理论框架及其在支持向量机上的应用;其次提出一种基于PAC-Bayes理论的Web文档数据质量评估方法(DQAPB),将SVM算法及其PAC-Bayes边界应用于Web文档的质量评价中,并构建了基于PAC-Bayes理论的Web文档质量评估指标体系;最后采用Wikipedia文档进行实验,实验结果表明该方法具有简便快速、稳定性和鲁棒性较强的优点。
由于现代网络数据量的急速增长,利用现有的算法生成关联规则时,冗余规则的数量远远大于实际有价值的规则,冗余规则不仅影响用户分析,而且使关联规则的利用率也大大降低。针对关联规则的冗余问题,提出了一种基于一阶谓词公式去除商务数据冗余关联规则的方法,利用一阶谓词公式来表示关联规则,通过等价公式进行转换,并利用算法和矩阵等价将谓词公式转换为邻接矩阵,然后利用冗余规则算法进行删除。实验原始数据为UCI数据集,并利用Weka生成关联规则。最后利用Matlab和Java实现冗余规则的去除。
针对属性值为直觉模糊数的多属性决策问题,提出了一种基于直觉模糊云模型的TOPSIS多属性决策方法。首先,利用直觉模糊云对备选方案的各个属性值进行描述,计算其数字特征——期望、熵和超熵;然后,构造各数字特征的决策矩阵,获得其对应的正、负理想解;最后,计算各数字特征与正、负理想解间的距离,进而获得综合贴近度,对备选方案进行排序,获得最优决策结果,并通过具体数值实例验证方法的合理性和有效性。