• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2015, Vol. 37 ›› Issue (07): 1349-1354.

• 论文 • 上一篇    下一篇

复杂背景下小麦叶部病害图像分割方法研究

张武,黄帅,汪京京,刘连忠   

  1. (安徽农业大学信息与计算机学院,安徽 合肥 230036)
  • 收稿日期:2014-05-12 修回日期:2014-08-14 出版日期:2015-07-25 发布日期:2015-07-25
  • 基金资助:

    农业部948资助项目(2013Z64);安徽省科技攻关项目(1201a0301008);安徽农业大学2014年学科骨干培育项目(2014XKPY63)

A segmentation method for wheat leaf
images with disease in complex background  

ZHANG Wu,HUANG Shuai,WANG Jingjing,LIU Lianzhong   

  1. (School of Information & Computer,Anhui Agriculture University,Hefei 230036,China)
  • Received:2014-05-12 Revised:2014-08-14 Online:2015-07-25 Published:2015-07-25

摘要:

针对复杂背景下小麦叶部病害图像分割问题,以小麦条锈病、叶锈病为研究对象,提出一种结合Kmeans聚类、Otsu阈值法等多种方法的分割策略。主要分三个步骤将小麦病斑图像分割出来:首先,利用背景与叶片a*b*分量的差异性,采用Kmeans聚类分割方法,去除泥土、杂草、阴影等背景,分割出小麦植株图像;其次,利用Otsu动态阈值法进行二值化处理,并结合数学形态学运算及面积阈值法分割出带有病斑的主要小麦病害叶片图像;最后,采用Kmeans算法对小麦病害叶片图像进行聚类运算,最终分割出小麦病斑图像。利用该方法进行分割实验,分割准确率达到95%以上,分割效果理想,为小麦叶部病害图像分割提供了参考,也为后续的小麦病害识别和诊断提供了基础。

关键词: 条锈病, 叶锈病, 图像分割, 复杂背景, K-means

Abstract:

According to the properties of wheat disease (wheat stripe rust and wheat leaf rust) images in complex background, we propose a segmentation method based on the Kmeans clustering segmentation method and the Otsu threshold algorithm. The proposed method is comprised of three main steps. Firstly, by utilizing the difference between the background and the a*b* of leaves, the k-means clustering segmentation method deletes the irrelevant background. Secondly, we use the Otsu dynamic threshold segmentation method to perform binarization and combine the mathematical morphological method with the area threshold method to separate the wheat leaf image with disease from the complex background. Finally, the Kmeans segmentation method is used again and eventually the disease spot of the image is divided. Experimental results show that the correct extraction rate can reach 95%, and it can segment the diseased regions from the whole color image  with good robustness and good accuracy, thus offering an effective method for wheat disease detection and diagnosis.

Key words: wheat stripe rust;wheat leaf rust;image segmentation;complex background;K-means